首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The control of pancreatic beta-cell growth and survival in the adult plays a pivotal role in the pathogenesis of type 2 diabetes. In certain insulin-resistant states, such as obesity, the increased insulin-secretory demand can often be compensated for by an increase in beta-cell mass, so that the onset of type 2 diabetes is avoided. This is why approximately two-thirds of obese individuals do not progress to type 2 diabetes. However, the remaining one-third of obese subjects that do acquire type 2 diabetes do so because they have inadequate compensatory beta-cell mass and function. As such, type 2 diabetes is a disease of insulin insufficiency. Indeed, it is now realized that, in the vast majority of type 2 diabetes cases, there is a decreased beta-cell mass caused by a marked increase in beta-cell apoptosis that outweighs rates of beta-cell mitogenesis and neogenesis. Thus a means of promoting beta-cell survival has potential therapeutic implications for treating type 2 diabetes. However, understanding the control of beta-cell growth and survival at the molecular level is a relatively new subject area of research and still in its infancy. Notwithstanding, recent advances have implicated signal transduction via insulin receptor substrate-2 (IRS-2) and downstream via protein kinase B (PKB, also known as Akt) as critical to the control of beta-cell survival. In this review, we highlight the mechanism of IRS-2, PKB, and anti-apoptotic PKB substrate control of beta-cell growth and survival, and we discuss whether these may be targeted therapeutically to delay the onset of type 2 diabetes.  相似文献   

2.
The pathways that control insulin release and regulate pancreatic beta-cell mass are crucial on the development of type 2 diabetes mellitus. Maturity-onset diabetes of the young comprises a number of single-gene disorders affecting beta-cell development and/or function. A genetic basis for the more common forms of type 2 diabetes which affect adults in developed as well as many developing countries is less clear cut. It is also characterized by abnormal beta-cell function. Appropriate inbred rodent models are an essential tool for the identification of genes and environmental factors that increase the risk of type 2 diabetes. The informations available from studies in the Goto-Kakizaki (GK) rat are here reviewed in such a perspective. This model was obtained by selective breeding of individuals with mild glucose intolerance from a non-diabetic Wistar rat colony. Heritability of defective beta-mass and beta-cell function in GK model is proposed to reflect the complex interactions of three pathogenic players: (1) three independent loci containing genes causating impaired insulin secretion; (2) gestational metabolic (hyperglycaemic) impairment inducing a programming of endocrine pancreas (decreased beta-cell mass) which is transmitted to the next generation; (3) secondary (acquired) loss of beta-cell differentiation due to chronic exposure to hyperglycaemia (glucotoxicity). A better understanding of the mechanisms involved in the failure of beta-cell function in the GK model will lead to identification of new therapeutic targets for both the prevention and treatment of type 2 diabetes.  相似文献   

3.
Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function.  相似文献   

4.
Islet neogenesis: a potential therapeutic tool in type 1 diabetes   总被引:2,自引:0,他引:2  
Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function.  相似文献   

5.
Androgen receptor (AR) mediates a wide range of cellular processes, such as proliferation, differentiation and apoptosis. Here we sought to identify whether AR was located in pancreatic beta-cells and investigate its functions in type 1 diabetes induced by multiple low doses of streptozotocin. Double/triple immunofluorescence, Western blot and semi-quantitative RT-PCR were carried out to determine variances of AR expression in beta-cells and correlation between AR and apoptosis/proliferation of beta-cells with progress of diabetes. In addition, in vitro primary beta-cells from control mice were cultured for 3 days or 6 days with compound stimulation in order to further identify effect of AR on beta-cell apoptosis and proliferation. AR expression in beta-cells peaked in control and 1-day diabetic mice, gradually and significantly decreased, even disappeared in diabetic mice with progress of diabetes. TUNEL-positive beta-cells were concomitant with overexpression of AR, and Ki67-positive beta-cells showed extremely weak, even negative AR staining. In vitro, AR could mediate beta-cell apoptosis, and AR antagonist flutamide contributed to beta-cell proliferation. In conclusion, AR is abundantly expressed in pancreatic beta-cell cytoplasm of control mice. With progress of type 1 diabetes, decrement of AR expression in diabetic mice contributes to prohibit beta-cells from apoptosis, and is strongly associated with beta-cell proliferation.  相似文献   

6.
Type 2 diabetes results from impaired insulin action and beta-cell dysfunction. There are at least two components to beta-cell dysfunction: impaired insulin secretion and decreased beta-cell mass. To analyze how these two variables contribute to the progressive deterioration of metabolic control seen in diabetes, we asked whether mice with impaired beta-cell growth due to Irs2 ablation would be able to mount a compensatory response in the background of insulin resistance caused by Insr haploinsufficiency. As previously reported, approximately 70% of mice with combined Insr and Irs2 mutations developed diabetes as a consequence of markedly decreased beta-cell mass. In the initial phases of the disease, we observed a robust increase in circulating insulin levels, even as beta-cell mass gradually declined, indicating that replication-defective beta-cells compensate for insulin resistance by increasing insulin secretion. These data provide further evidence for a heterogeneous beta-cell response to insulin resistance, in which compensation can be temporarily achieved by increasing function when mass is limited. The eventual failure of compensatory insulin secretion suggests that a comprehensive treatment of beta-cell dysfunction in type 2 diabetes should positively affect both aspects of beta-cell physiology.  相似文献   

7.
《Autophagy》2013,9(7):1055-1056
Pancreatic beta-cell dysfunction is central to the development and worsening of type 2 diabetes. Whereas beta-cell apoptosis plays a major role in reducing beta-cell mass in diabetes, alterations of autophagy can also lead to beta-cell death, as recently demonstrated in type 2 diabetic subjects. In addition, several studies with cell lines and rodent models have shown the importance of autophagy in regulating beta-cell survival and function. Although most of the underlying molecular mechanisms remain to be elucidated, this growing evidence raises interest in the role of autophagy in beta-cell pathophysiology and suggests the possibility of exploring autophagic processes to develop tools for protection of the pancreatic beta-cell in type 2 diabetes.  相似文献   

8.
Obesity-linked type 2 diabetes is a disease of insulin resistance combined with pancreatic beta-cell dysfunction. Although a role for beta-cell mass in the pathogenesis of obesity-linked type 2 diabetes has recently gained prominence, the idea is still being developed. It is proposed that in early obesity an increase in beta-cell mass and function might compensate for peripheral insulin resistance. However, as time and/or the severity of the obesity continue, there is decay in such adaptation and the beta-cell mass becomes inadequate. This, together with beta-cell dysfunction, leads to the onset of type 2 diabetes. It is becoming evident that elements in insulin and insulin growth factor (IGF)-1 signal-transduction pathways are key to regulating beta-cell growth. Current evidence indicates that interference of insulin signaling in obesity contributes to peripheral insulin resistance. This article examines whether a similar interference of IGF-1 signaling in the beta-cell could hinder upregulation of beta-cell mass and/or function, resulting in a failure to compensate for insulin resistance.  相似文献   

9.
10.
现在关于高糖高脂对胰腺β细胞的毒性机制已经有了明显的进展,但还不完全清楚。实际上,β细胞响应过量营养物质的过程是一个连续的过程,包括β细胞补偿和β细胞功能失调。在早期,β细胞应对高糖高脂的反应是一个积极主动的过程;而到后期,过量的糖脂会导致胰岛素分泌下降,削弱胰岛素基因表达量,并促进胰岛β细胞凋亡。最终对2型糖尿病的发展有促进作用。综述了近年来细胞水平和分子水平,在葡萄糖存在的条件下,脂肪酸对胰腺β细胞的损伤作用及其机制的研究进展,重在说明葡萄糖和脂肪酸在2型糖尿病发展中的共同作用。  相似文献   

11.
There are diverse strategies for gene therapy of diabetes mellitus. Prevention of beta-cell autoimmunity is a specific gene therapy for prevention of type 1 (insulin-dependent) diabetes in a preclinical stage, whereas improvement in insulin sensitivity of peripheral tissues is a specific gene therapy for type 2 (non-insulin-dependent) diabetes. Suppression of beta-cell apoptosis, recovery from insulin deficiency, and relief of diabetic complications are common therapeutic approaches to both types of diabetes. Several approaches to insulin replacement by gene therapy are currently employed: 1) stimulation of beta-cell growth, 2) induction of beta-cell differentiation and regeneration, 3) genetic engineering of non-beta cells to produce insulin, and 4) transplantation of engineered islets or beta cells. In type 1 diabetes, the therapeutic effect of beta-cell proliferation and regeneration is limited as long as the autoimmune destruction of beta cells continues. Therefore, the utilization of engineered non-beta cells free from autoimmunity and islet transplantation with immunological barriers are considered potential therapies for type 1 diabetes. Proliferation of the patients' own beta cells and differentiation of the patients' own non-beta cells to beta cells are desirable strategies for gene therapy of type 2 diabetes because immunological problems can be circumvented. At present, however, these strategies are technically difficult, and transplantation of engineered beta cells or islets with immunological barriers is also a potential gene therapy for type 2 diabetes.  相似文献   

12.
Type 2 diabetes is characterized by both peripheral insulin resistance and reduced insulin secretion by beta-cells. The reasons for beta-cell dysfunction in this disease are incompletely understood but may include the accumulation of toxic lipids within this cell type. We examined the role of Abca1, a cellular cholesterol transporter, in cholesterol homeostasis and insulin secretion in beta-cells. Mice with specific inactivation of Abca1 in beta-cells had markedly impaired glucose tolerance and defective insulin secretion but normal insulin sensitivity. Islets isolated from these mice showed altered cholesterol homeostasis and impaired insulin secretion in vitro. We found that rosiglitazone, an activator of the peroxisome proliferator-activated receptor-gamma, which upregulates Abca1 in beta-cells, requires beta-cell Abca1 for its beneficial effects on glucose tolerance. These experiments establish a new role for Abca1 in beta-cell cholesterol homeostasis and insulin secretion, and suggest that cholesterol accumulation may contribute to beta-cell dysfunction in type 2 diabetes.  相似文献   

13.
In addition to serving as an energy reservoir, the adipocyte has been characterized as an endocrine cell, secreting many bioactive factors which influence energy homeostasis. Being overweight, with excessive adipose tissue, is considered to be part of the pathogenesis of type 2 diabetes. Insulin resistance and beta-cell dysfunction are two major pathophysiological changes seen in type 2 diabetes. In addition to inducing insulin resistance in insulin-responsive tissues, adipocyte-derived factors play an important role in the pathogenesis of beta-cell dysfunction. Leptin, free fatty acids, adiponectin, tumor necrosis factor-alpha and interleukin-6 are all produced and secreted by adipocytes, and may directly influence aspects of beta-cell function, including insulin synthesis and secretion, insulin cell survival and apoptosis. During the progression from normal weight to obesity and on to overt diabetes, the adipocyte-derived factors contribute to the occurrence and development of beta-cell dysfunction and type 2 diabetes.  相似文献   

14.
Liang K  Du W  Zhu W  Liu S  Cui Y  Sun H  Luo B  Xue Y  Yang L  Chen L  Li F 《The Journal of biological chemistry》2011,286(45):39537-39545
The development of insulin-dependent diabetes mellitus (IDDM) results from the selective destruction of pancreatic beta-cells. Both humans and spontaneous models of IDDM, such as NOD mice, have an extended pre-diabetic stage. Dynamic changes in beta-cell mass and function during pre-diabetes, such as insulin hyper-secretion, remain largely unknown. In this paper, we evaluated pre-diabetic female NOD mice at different ages (6, 10, and 14 weeks old) to illustrate alterations in beta-cell mass and function as disease progressed. We found an increase in beta-cell mass in 6-week-old NOD mice that may account for improved glucose tolerance in these mice. As NOD mice aged, beta-cell mass progressively reduced with increasing insulitis. In parallel, secretory ability of individual beta-cells was enhanced due to an increase in the size of slowly releasable pool (SRP) of vesicles. Moreover, expression of both SERCA2 and SERCA3 genes were progressively down-regulated, which facilitated depolarization-evoked secretion by prolonging Ca(2+) elevation upon glucose stimulation. In summary, we propose that different mechanisms contribute to the insulin hyper-secretion at different ages of pre-diabetic NOD mice, which may provide some new ideas concerning the progression and management of type I diabetes.  相似文献   

15.
In type 1 diabetes, insulin-producing beta-cells in the pancreas are destroyed by immune-mediated mechanisms. The manifestation of the disease is preceded by the so-called pre-diabetic period that may last several years and is characterized by the appearance of circulating autoantibodies against beta-cell antigens. The role of the gut as a regulator of type 1 diabetes was suggested in animal studies, in which changes affecting the gut immune system modulated the incidence of diabetes. Dietary interventions, alterations in the intestinal microbiota and exposure to enteric pathogens, regulate the development of autoimmune diabetes in animal models. It has been demonstrated that these modulations affect the gut barrier mechanisms and intestinal immunity. Because the pancreas and the gut belong to the same intestinal immune system, the link between autoimmune diabetes and the gut is not unexpected. The gut hypothesis in the development of type 1 diabetes is also supported by the observations made in human type 1 diabetes. Early diet could modulate the development of beta-cell autoimmunity; weaning to hydrolysed casein formula decreased the risk of beta-cell autoimmunity by age 10 in the infants at genetic risk. Increased gut permeability, intestinal inflammation with impaired regulatory mechanisms and dysregulated oral tolerance have been observed in children with type 1 diabetes. The factors that contribute to these intestinal alterations are not known, but interest is focused on the microbial stimuli and function of innate immunity. It is likely that our microbial environment does not support the healthy maturation of the gut and tolerance in the gut, and this leads to the increasing type 1 diabetes as well as other immune-mediated diseases regulated by intestinal immune system. Thus, the interventions, aiming to prevent or treat type 1 diabetes in humans, should be targeting the gut immune system.  相似文献   

16.
Regeneration therapy of pancreatic beta cells: towards a cure for diabetes?   总被引:5,自引:0,他引:5  
Regeneration therapy is an approach which could potentially move us towards a cure for type 1 diabetes. It is classified into three categories: (1) In vitro regeneration therapy using transplanted cultured cells, including ES cells, pancreatic stem cells, and beta-cell lines, in conjunction with immunosuppressive therapy or immunoisolation. (2) In ex vivo regeneration therapy, patients' own cells, such as bone marrow stem cells, are transiently removed and induced to differentiate into beta cells in vitro. At present, however, insulin-producing cells cannot be generated from bone marrow stem cells. (3) In in vivo regeneration therapy, impaired tissues regenerate from patients' own cells in vivo. beta-Cell neogenesis from non-beta-cells and beta-cell proliferation in vivo have been considered, particularly as regeneration therapies for type 2 diabetes. Regeneration therapy of pancreatic beta cells can be combined with various other therapeutic strategies, including islet transplantation, cell-based therapy, gene therapy, and drug therapy to promote beta-cell proliferation and neogenesis, and it is hoped that these strategies will, in the future, provide a cure for diabetes.  相似文献   

17.
Failure of pancreatic beta-cells is the common characteristic of type 1 and type 2 diabetes. Type 1 diabetes mellitus is induced by destruction of pancreatic beta-cells which is mediated by an autoimmune mechanism and consequent inflammatory process. Various inflammatory cytokines and oxidative stress are produced during this process, which has been proposed to play an important role in mediating beta-cell destruction. The JNK pathway is also activated by such cytokines and oxidative stress, and is involved in beta-cell destruction. Type 2 diabetes is the most prevalent and serious metabolic disease, and beta-cell dysfunction and insulin resistance are the hallmark of type 2 diabetes. Under diabetic conditions, chronic hyperglycemia gradually deteriorates beta-cell function and aggravates insulin resistance. This process is called "glucose toxicity". Under such conditions, oxidative stress is provoked and the JNK pathway is activated, which is likely involved in pancreatic beta-cells dysfunction and insulin resistance. In addition, oxidative stress and activation of the JNK pathway are also involved in the progression of atherosclerosis which is often observed under diabetic conditions. Taken together, it is likely that oxidative stress and subsequent activation of the JNK pathway are involved in the pathogenesis of type 1 and type 2 diabetes.  相似文献   

18.
19.
Knip M 《Hormone research》2002,57(Z1):6-11
The clinical presentation of type 1 diabetes is preceded by an asymptomatic latent period characterized by the presence of diabetes-associated autoantibodies in the peripheral circulation, reflecting beta-cell damage. This prediabetic period may last for months and years. Several studies observing genetically susceptible subjects from birth have shown that insulin autoantibodies (IAA) are the first or among the first autoantibodies to appear in young children, implying that insulin may be the primary autoantigen in most cases of childhood type 1 diabetes. About 12-16% of siblings of children with type 1 diabetes have been observed to test positive for at least one diabetes-associated autoantibody, whereas the risk of diabetes among siblings has been estimated to be 6-8%. In parallel, close to 4% of Finnish schoolchildren tested positive for at least one diabetes-associated autoantibody; the lifetime risk of type 1 diabetes in the Finnish population has been estimated to be close to 1%. These observations suggest that only 25-50% of those with signs of beta-cell autoimmunity eventually progress to clinical type 1 diabetes. Accordingly there is a considerable proportion of children in whom beta-cell autoimmunity remains subclinical or is aborted. Positivity for only one diabetes-associated autoantibody may actually represent innocent beta-cell autoimmunity, while positivity for two or more autoantibodies seems to mark a point of no return. The autoimmune response is very dynamic in the early phase of prediabetes, with spreading from one antigen to another and from one epitope to another within a given antigen. In addition both isotype spreading and switching can be observed in early prediabetes. This indicates that the early prediabetic process may be a suitable target for immunomodulation aimed at delaying or preventing progression to clinical diabetes.  相似文献   

20.
Development of diabetes generally reflects an inadequate mass of insulin-producing beta-cells. beta-cell proliferation and differentiation are regulated by a variety of growth factors and hormones, including insulin-like growth factor I (IGF-I). GRF1 is a Ras-guanine nucleotide exchange factor known previously for its restricted expression in brain and its role in learning and memory. Here we demonstrate that GRF1 is also expressed in pancreatic islets. Interestingly, our GRF1-deficient mice exhibit reduced body weight, hypoinsulinemia and glucose intolerance owing to a reduction of beta-cells. Whereas insulin resistance is not detected in peripheral tissues, GRF1 knockout mice are leaner due to increased lipid catabolism. The reduction in circulating insulin does not reflect defective glucose sensing or insulin production but results from impaired beta-cell proliferation and reduced neogenesis. IGF-I treatment of isolated islets from GRF1 knockouts fails to activate critical downstream signals such as Akt and Erk. The observed phenotype is similar to manifestations of preclinical type 2 diabetes. Thus, our observations demonstrate a novel and specific role for Ras-GRF1 pathways in the development and maintenance of normal beta-cell number and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号