首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly efficient genetic transformation protocols and the regeneration of transgenic plants of Sugraone and Crimson Seedless grapevines (Vitis vinifera L.) were achieved from embryogenic calli co-cultured with low Agrobacterium tumefaciens densities. The sensitivity of embryogenic cultures to kanamycin, as well as the effect of Agrobacterium strains, C58(pMP90) or EHA105, and the bacterial concentration (0.06 or 0.2 at Optical Density OD600) on transformation efficiency were studied. Embryogenic cultures showed different kanamycin sensitivities and the total suppression of embryo differentiation at 20 and 50 mg/l kanamycin for Crimson Seedless and Sugraone, respectively. sgfp gene expression was evaluated in callus co-cultured with each bacterial strain. Although GFP transient expression was higher with A. tumefaciens EHA105 in both cultivars at the beginning of the culture, there were no significant differences 28 days post-inoculation. However, the concentration of Agrobacterium did affected transformation efficiency: 0.06 OD600 being more effective for the transformation of Crimson Seedless and 0.2 OD600 for Sugraone. By following the optimised procedure, 21 and 26 independent transgenic plants were generated from Sugraone and Crimson Seedless respectively, three to five months post-infection. PCR analyses were carried out to verify the integration of the sgfp and nptII genes into grapevine genome and the stable integration of the sgfp gene was confirmed by Southern blot.  相似文献   

2.
Factors influencing the efficiency of Agrobacterium-mediated transformation of pea were tested using highly efficient, direct regeneration system. The virulence of three Agrobacterium strains (octopine LBA 4404, nopaline C58C1 and succinamopine, hypervirulent EHA 105) clearly varied giving 1 transgenic plant per 100 explants for LBA 4404, 2.2 for C58C1 and 8.2 for EHA 105. To test the efficacy of selection agents we used the hypervirulent EHA 105 strain carrying pGPTV binary vector with one of four different selection genes: nptII, hpt, dhfr or bar. The mean number of transgenic, kanamycin-resistant plants for two cultivars tested was 4.2 per 100 explants and was slightly higher than the number of phosphinothricin-resistant plants (3.6 plants per 100 explants). The proportion of transgenics among kanamycin-selected plants was also higher than among phosphinothricin-resistant plants (35% and 28% respectively). There was no regeneration on hygromycin or methotrexate media (transformation with hpt and dhfr genes). Acetosyringone had no apparent influence on efficiency of transformation with hypervirulent EHA 105 strain, however it did affect the rate of transformation when moderately virulent C58C1 was used. Recovery of transgenic plants was enhanced after application of 5-azacytidine. The presence of integrated T-DNA was checked by PCR and confirmed by Southern hybridization. T-DNA was stably transmitted to the next generation.  相似文献   

3.
A protocol for Agrobacterium-mediated transformation was developed for embryogenic callus of an excellent climber species, Parthenocissus tricuspidata. A. tumefaciens strain EHA105 or C58 harboring the pCAMBIA2301 binary vector with the neomycin phosphotransferase (nptII) and β-glucuronidase (uidA) gene was used. Factors affecting the transformation efficiency, including the Agrobacterium strains, co-cultivation time, Agrobacterium concentration, and infection time, were evaluated. Strain EHA105 proved to be significantly better than C58, and 4 days of co-culture was critical for transformation. An Agrobacterium suspension at a concentration of 0.5–0.7 × 108 cells ml−1 (OD600 = 0.5–0.7) and an infection time of 40 min was optimal for transformation. By applying these optimized parameters, we recovered six independent transformed shoots that were kanamycin-resistant and contained the nptII gene, as verified by polymerase chain reaction (PCR) analysis. Southern blot analysis confirmed that T-DNA was stably integrated into the genome of three out of six PCR-positive lines. Furthermore, histochemical GUS assay revealed the expression of the uidA gene in kanamycin-resistant calli, somatic embryos, and leaves of transgenic plants.  相似文献   

4.
Summary Using the system for genetic transformation and transgenic plant regeneration via somatic embryogenesis (SE) of Lycium barbarum established in this laboratory, this study reports the optimization of the factors affecting the efficiency of transformation, including pre-culture period, leaf explant source, use of acetosyringone, strains and density of Agrobacterium, and temperature of co-cultivation. The optimized transformation protocol for L. barbarum included preculture of leaf explants from 3-wk-old seedlings for 3 d on the medium for callus induction followed by inoculation with Agrobacterium strain EHA101 (pIG121 Hm), co-cultivation for 3d at 24°C, and transfer to the selection regeneration medium with 50 mg l−1 kanamycin (Kan). Using this protocol, 65% L. barbarum explants gave rise to Kan-resistant and GUS-positive calli. In addition, the expression of introduced transgene (npt II) in clonal progeny was verified by formation of calli and somatic embryos from leaf segments of nine transgenic plants grown on the Kan-containing medium. All explants formed calli at 50 mg l−1 Kan and seven out of nine transgenic plants were found to possess callus-forming capacity even at 100 mg l−1 Kan. These calli also possessed higher SE potential on SE medium supplemented with 25 mg l−1 Kan.  相似文献   

5.
Agrobacterium-mediated transformation of Phaseolus acutifolius A. Gray has been achieved. Regeneration-competent callus, obtained from bud explants of greenhouse-grown plants, was co-cultivated with Agrobacterium tumefaciens C58C1RifR(pMP90) harbouring a binary vector with the neomycin phosphotransferase II (nptII) and β-glucuronidase (uidA) marker genes. Transient expression of uidA was detected in five out of six genotypes tested. Transgenic callus lines of three genotypes were established on geneticin-containing medium. Plants were recovered from one line (genotype NI 576). This line had been transformed with a binary plasmid which, in addition to the marker genes, contained a genomic fragment encoding the Phaseolus vulgaris arcelin-5a protein. This seed storage protein presumably confers resistance to the insect Zabrotes subfasciatus, a major pest of P. vulgaris. Integration of foreign DNA was confirmed by molecular analysis. The introduced genes segregated as a single locus. Arcelin-5a was produced at high levels in seeds. The possibility of using P. acutifolius as a `bridging' species to introduce transgenes into the economically more important species P. vulgaris is discussed. Received: 20 July 1996 / Accepted: 23 August 1996  相似文献   

6.
The first transgenic peppermint (Mentha×piperita L. cultivar Black Mitcham) plants have been obtained by Agrobacterium-mediated transformation by cocultivation with morphogenically responsive leaf explants. Basal leaf explants with petioles, from leaves closest to the apex of in-vitro-culture-maintained shoots (5 cm), exhibited optimal shoot organogenetic responsiveness on medium supplemented with thidiazuron (8.4 μm). Shoot formation occurred at sites of excision on the leaf blade and petiole either directly from cells of the explant or via a primary callus. Analyses of transient GUS activity data indicated that DNA delivery by microprojectile bombardment was more effective than Agrobacterium infection. However, no transgenic plants were obtained from over 22,000 leaf explants after particle bombardment. Cocultivation of leaf explants with Agrobacterium strain EHA 105 and kanamycin selection produced transgenic plants. Greater transient and stable -glucuronidase (GUS) activities were detected in explants or propagules transformed with the construct where gusA was driven by the pBISN1 promoter rather than a CaMV 35S promoter. Eight plants were subsequently regenerated and verified as transgenic based on detection of the nptII transgene by PCR and Southern blot analyses. The Southern analyses indicated that the plants were derived from eight unique transformation events. All transgenic plants appeared morphologically normal. Analyses of GUS activities in leaves sampled from different portions of these transgenic plants, 10 months after transfer to the greenhouse, indicated that six out of the eight original regenerants were uniformly transformed, i.e., did not exhibit chimeric sectors. Received: 12 December 1997 / Revision received: 3 June 1997 / Accepted: 18 July 1997  相似文献   

7.
In this study, leaf midribs, the elite explants, were used for the first time to develop an efficient regeneration and transformation protocol for ramie [Boehmeria nivea (L.) Gaud.] via Agrobacterium-mediated genetic transformation. Sensitivity of leaf midribs regeneration to kanamycin was evaluated, which showed that 40 mg l?1 was the optimal concentration needed to create the necessary selection pressure. Factors affecting the ramie transformation efficiency were evaluated, including leaf age, Agrobacterium concentration, length of infection time for the Agrobacterium solution, acetosyringone concentration in the co-cultivation medium, and the co-cultivation period. The midrib explants from 40-day-old in vitro shoots, an Agrobacterium concentration at OD600 of 0.6, 10-min immersion in the bacteria solution, an acetosyringone concentration of 50 mg l?1 in the co-cultivation medium and a 3-day co-cultivation period produced the highest efficiencies of regeneration and transformation. In this study, the average transformation rate was 23.25 %. Polymerase chain reactions using GUS and NPTII gene-specific primers, Southern blot and histochemical GUS staining analyses further confirmed that the transgene was integrated into the ramie genome and expressed in the transgenic ramie. The establishment of this system of Agrobacterium-mediated genetic transformation and regeneration of transgenic plants will be used not only to introduce genes of interest into the ramie genome for the purpose of trait improvement, but also as a common means of testing gene function by enhancing or inhibiting the expression of target genes.  相似文献   

8.
Agrobacterium-mediated genetic transformation has been widely used to generate transgenic plants in angiosperms. However, progress in conifer species has lagged because of the recalcitrant nature of gene transfer. In this study, a transgenic plant regeneration system has been established for slash pine (Pinus elliottii Engelm.) using Agrobacterium-mediated transformation. Among the different Agrobacterium tumefaciens strains (EHA105, GV3101, and LBA4404) tested, the highest frequency (60%) of transient β-glucuronidase-expressing embryos was obtained from Agrobacterium strain GV3101 with over 330 blue spots per embryo. To improve the frequency of transformation, different cocultivation conditions were analyzed. Combination of Agrobacterium density at OD600?=?0.9, 50 s sonication of embryos, and the addition of 50 μM acetosyringone produced the highest transformation efficiency, in which 56.2% of embryos formed hygromycin-resistant calli. Transient gene expression was observed in cotyledons and hypocotyls, but transgenic plants were only produced from callus cultures derived from embryonic cotyledons of transformed slash pine. Stable integration of transgenes in the plant genome of slash pine was confirmed by polymerase chain reaction, Southern blot, and Northern blot analyses. Transgenic lines with a single T-DNA copy were produced from Agrobacterium strains EHA105 (80.4%), GV3101 (95.7%), and LBA4404 (66%). These results demonstrated that a stable transformation system has been established in slash pine, and this system could provide an opportunity to transfer economically important genes into slash pine.  相似文献   

9.

Key message

Agrobacterium tumefaciens strains differ not only in their ability to transform tomato Micro-Tom, but also in the number of transgene copies that the strains integrate in the genome.

Abstract

The transformation efficiency of tomato (Solanum lycopersicum L.) cv. Micro-Tom with Agrobacterium tumefaciens strains AGL1, EHA105, GV3101, and MP90, harboring the plasmid pBI121 was compared. The presence of the nptII and/or uidA transgenes in regenerated T0 plants was determined by PCR, Southern blotting, and/or GUS histochemical analyses. In addition, a rapid and reliable duplex, qPCR TaqMan assay was standardized to estimate transgene copy number. The highest transformation rate (65 %) was obtained with the Agrobacterium strain GV3101, followed by EHA105 (40 %), AGL1 (35 %), and MP90 (15 %). The mortality rate of cotyledons due to Agrobacterium overgrowth was the lowest with the strain GV3101. The Agrobacterium strain EHA105 was more efficient than GV3101 in the transfer of single T-DNA insertions of nptII and uidA transgenes into the tomato genome. Even though Agrobacterium strain MP90 had the lowest transformation rate of 15 %, the qPCR analysis showed that the strain MP90 was the most efficient in the transfer of single transgene insertions, and none of the transgenic plants produced with this strain had more than two insertion events in their genome. The combination of higher transformation efficiency and fewer transgene insertions in plants transformed using EHA105 makes this Agrobacterium strain optimal for functional genomics and biotechnological applications in tomato.  相似文献   

10.
Engineering oilseed crops for industrial purposes requires a suitable crop that does not outcross to any food oilseed crop, thus eliminating problems of gene flow. Crambe abyssinica is such a dedicated crop as it does not hybridize with any existing food oilseed crops. However, lack of regeneration and transformation protocols has limited the use of C. abyssinica in genetic manipulation studies. In this study, efficient regeneration and transformation protocols for Crambe have been developed. Hypocotyls of C. abyssinica cv. Galactica were incubated on a Murashige and Skoog medium supplemented with various plant growth regulators (PGRs). Among the different PGR combinations tested, 10 μM thidiazuron and 2.7 μM α-naphthaleneacetic acid promoted highest frequency of regeneration, up to 60%. Among six Agrobacterium stains evaluated, each harbouring the cloning vector containing the neomycin phosphotransferase (nptII) and β-glucuronidase (gus) genes. EHA101 and AGL-1 yielded the highest transformation frequencies of 1.3 and 2.1%, respectively. Putative transgenic lines were recovered, and confirmed as transgenic by Southern blot analysis. Subsequently, Agrobacterium-mediated transformation of hypocotyls of cv. Galactica with constructs harbouring the wax synthase and fatty acid reductase genes have also successfully recovered confirmed transgenic plants carrying these transgenes.  相似文献   

11.
Although efficient shoot regeneration and selection are essential for genetic transformation mediated byAgrobacterium, success has been limited with the garland chrysanthemum (Chrysanthemum coronarium L.). In this study, we developed a useful protocol for shoot regeneration with leaf disk explants. The optimal concentrations of NAA and BA were 0.2 mg L−1 and 0.5 mg L−1, respectively. To optimize the selection system for regenerating plants from genetically transformed tissues, we tested the effects of four antibiotics (kanamycin, hygromycin, carbenicillin, and cefotaxime). Among them, 5 mg L-1 hygromycin proved adequate as a selectable marker, whereas 500 mg L-1 carbenicillin was effective in eliminating excessiveAgrobacterium after co-cultivation. Transgenic plants were obtained by first co-culturing garland chrysanthemum leaf disks withA. tumefaciens strain EHA105, which harbors plasmid pRCVII containing the hygromycin resistance (hpt) and β-glucuronidase (GUS) genes. After the transgenic plants were confirmed via Southern analysis, they were rooted in soil and appeared phenotypically normal. Our report is the first to describe the optimum conditions for producing transgenic plants of this species.  相似文献   

12.
Agrobacterium-mediated transformation in Citrullus lanatus   总被引:1,自引:1,他引:0  
Agrobacterium tumefaciens-mediated transformation was used to produce transgenic watermelon. Cotyledonary explants of Citrullus lanatus Thumb (cv. Daesan) were co-cultivated with Agrobacterium strains (LBA4404, GV3101, EHA101) containing pPTN289 carrying with bar gene and pPTN290 carrying with nptII gene, respectively. There was a significant difference in the transformation frequency between bacteria strains and selective markers. The EHA101/pPTN289 showed higher transformation frequency (1.16 %) than GV3101/pPTN289 (0.33 %) and LBA4404/pPTN289 or /pPTN290 (0 %). The shoots obtained (633 and 57 lines) showed some resistance to glufosinate and paromomycin, respectively. Of them, the β-glucuronidase positive response and PCR products amplified by bar and nptII specific primers showed at least 21 plants resistant to glufosinate and at least 6 plants to paromomycin. Southern blot analysis revealed that the bar gene integrated into genome of transgenic watermelon. Acclimated transgenic watermelons were successfully transplanted in the greenhouse and showed no phenotypic variation.  相似文献   

13.
Apple has become a model species for Rosaceae genetic and genomic research, but it is difficult to obtain transgenic apple plants by Agrobacterium-mediated transformation using in vitro leaves as explants. In this study, we developed an efficient regeneration and Agrobacterium-mediated transformation system for crab apple (Malus micromalus) using cotyledons as explants. The proximal cotyledons of M. micromalus, excised from seedlings that emerged from mature embryos cultured for 10–14 d in vitro, were suitable as explants for regeneration and Agrobacterium-mediated transformation. Cotyledon explants were cocultivated for 3 d with Agrobacterium tumefaciens strain EHA105 harboring the binary vector pCAMBIA2301 on regeneration medium. Kanamycin-resistant buds were produced on cotyledon explants cultured on selective regeneration medium containing 20 mg/L kanamycin. Acetosyringone supplemented in the Agrobacterium suspension or in the cocultivation medium slightly enhanced the regeneration of kanamycin-resistant buds. The maximum percentage of explants with kanamycin-resistant buds was 11.7%. The putative transformed plants were confirmed by histochemical analysis of β-glucuronidase activity and the polymerase chain reaction amplification of the neomycin phosphotransferase II gene. This transformation system also enables recovery of nontransformed isogenic controls developed from embryo buds and is therefore suitable for functional genomics studies in apple.  相似文献   

14.
Transgenic plants of the aromatic shrub Lavandula latifolia (Lamiaceae) were produced using Agrobacterium tumefaciens-mediated gene transfer. Leaf and hypocotyl explants from 35–40-day old lavender seedlings were inoculated with the EHA105 strain carrying the nptII gene, as selectable marker, and the reporter gusA gene with an intron. Some of the factors influencing T-DNA transfer to L. latifolia explants were assessed. Optimal transformation rates (6.0 ± 1.6% in three different experiments) were obtained when leaf explants precultured for 1 day on regeneration medium were subcultured on selection medium after a 24 h co-cultivation with Agrobacterium. Evidence for stable integration was obtained by GUS assay, PCR and Southern hybridisation. More than 250 transgenic plants were obtained from 37 independent transformation events. Twenty-four transgenic plants from 7 of those events were successfully established in soil. -glucuronidase activity and kanamycin resistance assays in greenhouse-grown plants from two independent transgenic lines confirmed the stable expression of both gusA and nptII genes two years after the initial transformation. Evidence from PCR data, GUS assays and regeneration in the presence of kanamycin demonstrated a 1:15 Mendelian segregation of both transgenes among seedlings of the T1 progeny of two plants from one transgenic L. latifolia line.  相似文献   

15.
A method for fast plant regeneration via organogenesis directly from Lycium barbarumleaf explants has been developed. The key factor for shoot regeneration was the presence of benzyladenine (BA) in the medium. NAA could only induce root formation and explant callusing. Murashige and Skoog (MS) medium supplemented with 2 mg/l BA and 0.5 mg/l NAA is the most efficient condition for shoot formation, with up to 92.6% shoot regeneration and no callus formation. All adventitious shoots cultured on MS medium supplemented with 1 mg/l IAA formed an extensive root system. Regenerated plants were morphologically normal and were also proved to be diploid (2n = 24). Using the optimized regeneration system, the genetic transformation of L. barbarumwas carried out mediated by Agrobacterium tumefaciensEHA101(pIG121Hm). 11.8% leaf explants produced kanamycin-resistant shoots after infection by A. tumefaciens.The putative transgenic nature of plants was confirmed by GUS assay and PCR analysis. Expression of the nptIIgene in the regenerated plants was also detected by observing the callus formation by leaf pieces on MS medium containing 0.2 mg/l 2,4-D and 0–100 mg/l kanamycin.  相似文献   

16.

Key message

An efficient, reproducible and genotype-independent in planta transformation has been standardized for sugarcane using seed as explant.

Abstract

Transgenic sugarcane production through Agrobacterium infection followed by in vitro regeneration is a time-consuming process and highly genotype dependent. To obtain more number of transformed sugarcane plants in a relatively short duration, sugarcane seeds were infected with Agrobacterium tumefaciens EHA 105 harboring pCAMBIA 1304-bar and transformed plants were successfully established without undergoing in vitro regeneration. Various factors affecting sugarcane seed transformation were optimized, including pre-culture duration, acetosyringone concentration, surfactants, co-cultivation, sonication and vacuum infiltration duration. The transformed sugarcane plants were selected against BASTA® and screened by GUS and GFP visual assay, PCR and Southern hybridization. Among the different combinations and concentrations tested, when 12-h pre-cultured seeds were sonicated for 10 min and 3 min vacuum infiltered in 100 µM acetosyringone and 0.1 % Silwett L-77 containing Agrobacterium suspension and co-cultivated for 72-h showed highest transformation efficiency. The amenability of the standardized protocol was tested on five genotypes. It was found that all the tested genotypes responded favorably, though CoC671 proved to be the best responding cultivar with 45.4 % transformation efficiency. The developed protocol is cost-effective, efficient and genotype independent without involvement of any tissue culture procedure and can generate a relatively large number of transgenic plants in approximately 2 months.  相似文献   

17.
18.
The main obstacle to genetic engineering of fruit tree species is the regeneration of transformed plantlets. Transformation events in peach (Prunus persica L.) have been reported using particle bombardment or Agrobacteriummediated transformation of immature embryos. However, the regeneration of plants from transgenic tissues is still difficult and the recovery of non-chimeric plants has not been reported to date. In this paper we describe an efficient, reliable transformation and regeneration system to produce transgenic peach plants using embryo sections of mature seeds as starting material. This represents an important advantage due to the availability of such material throughout the year. A. tumefaciens strain C58 (pMP90) containing the binary plasmid pBin19 was used as vector system for transformation. We used the Nospro-nptII-Noster cassette as a selectable marker and the CaMV35Spro-sgfp-CaMV35Ster cassette as a vital reporter gene coding for an improved version of the green fluorescent protein (sGFP). In vitro cultured embryo sections were Agrobacterium-cocultivated and, after selection, transgenic shoots were regenerated. Shoots that survived exhibited high-level of sGFP expression mainly visible in the young leaves of the apex. In vivo monitoring of GFP expression permitted an early, rapid and easy discrimination of both transgenic and escape buds. After elimination of escapes, transgenic shoots were rooted in vitro and the recovered plantlets were screened using PCR amplification. Southern analysis confirmed stable genomic integration of the sgfp transgene. The high levels of GFP expression were also maintained in the second generation of transgenic peach plants.  相似文献   

19.
We compared rice transgenic plants obtained by Agrobacterium-mediated and particle bombardment transformation by carrying out molecular analyses of the T0, T1 and T2 transgenic plants. Oryza sativa japonica rice (c.v. Taipei 309) was transformed with a construct (pWNHG) that carried genes coding for neomycin phosphotransferase (nptII), hygromycin phosphotransferase (Hygr), and -glucuronidase (GUS). Thirteen and fourteen transgenic lines produced via either method were selected and subjected to molecular analysis. Based on our data, we could draw the following conclusions. Average gene copy numbers of the three transgenes were 1.8 and 2.7 for transgenic plants obtained by Agrobacterium and by particle bombardment, respectively. The percentage of transgenic plants containing intact copies of foreign genes, especially non-selection genes, was higher for Agrobacterium-mediated transformation. GUS gene expression level in transgenic plants obtained from Agrobacterium-mediated transformation was more stable overall the transgenic plant lines obtained by particle bombardment. Most of the transgenic plants obtained from the two transformation systems gave a Mendelian segregation pattern of foreign genes in T1 and T2 generations. Co-segregation was observed for lines obtained from particle bombardment, however, that was not always the case for T1 lines obtained from Agrobacterium-mediated transformation. Fertility of transgenic plants obtained from Agrobacterium-mediated transformation was better. In summary, the Agrobacterium-mediated transformation is a good system to obtain transgenic plants with lower copy number, intact foreign gene and stable gene expression, while particle bombardment is a high efficiency system to produce large number of transgenic plants with a wide range of gene expression.  相似文献   

20.
An improved protocol for Agrobacterium-mediated transformation of an elite, mature black cherry genotype was developed. To increase transformation efficiency, vacuum infiltration, sonication, and a combination of the two treatments were applied during the cocultivation of leaf explants with Agrobacterium tumefaciens strain EHA105 harboring a PsAGAMOUS RNAi plasmid (pART27-PsAGRNAi). The effects of Agrobacterium culture density and cocultivation duration on transformation efficiency were examined using EHA105 harboring either pBI121-MDL4 or pBI121-PsTFL1. In addition, the effect of the binary vector on transformation efficiency was also studied. Fifteen-minute vacuum infiltration without sonication produced the highest transformation efficiency (21.7%) in experiments using pART27-PsAGRNAi. OD600 values of 1.0 and 1.5 resulted in a transformation efficiency of 5% when pBI121-PsTFL1 was used for transformation. Transformation efficiency of 5% was also obtained from 3-d cocultivation using construct pBI121-MDL4 whereas no shoots regenerated after 4-d cocultivation. The binary vectors used also impacted transformation efficiency. PCR and quantitative-PCR analyses were used to confirm the integration of transgenes and determine the copy number of the selectable marker gene, neomycin phosphotransferase II, in 18 putative transgenic lines. Rooting of transgenic black cherry shoots was achieved at a frequency of 30% using half-strength Murashige and Skoog medium supplemented with 2% sucrose, 5 μM naphthaleneacetic acid, 0.01 μM kinetin, and 0.793 mM phloroglucinol, and the resulting transgenic plants were successfully acclimatized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号