首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Premature fracture of the bone plate caused by fatigue crack is the main failure mode in treating femoral shaft fracture. In order to improve the durability of the plate, this study proposed a crack attraction hole (CAH) to retard the crack propagation based on the fracture mechanics. In this paper, a numerical model of the femoral fracture internal fixation system was constructed, in which the femur was developed using a validated simplified model. First, the fatigue crack initiation location was defined at the stress concentration through static analysis. Next, with the joint simulation method of Franc3D and ABAQUS, the fatigue crack path in the bone plate was predicted. Meanwhile, the Paris parameters of Ti-6Al-4V obtained through experiments were encoded into Franc3D to calculate the crack propagation life. Finally, we considered the influence of CAH designs with different relative vertical distances (2.0, 3.0, and 4.0 mm) and diameters (1.5, 2.0, and 2.5 mm) on the crack propagation path and life of the bone plate. Additionally, the effects of all CAH configurations on the biomechanical performance of the bone plate fixation system were evaluated. The results indicated that the fatigue crack growth path in the bone plate is comparable to a straight line, and the crack growth rate significantly increases when the crack tip reaches the outer boundary of the plate. The findings suggest that the addition of CAH in the bone plate will lead to the deflection of the crack path and increase the fatigue life. Equally important, the improvement of the fatigue life was positively correlated with the diameter of CAH and negatively correlated with the relative vertical distance. In addition, the biomechanical properties of the bone plate system were slightly affected by CAH, substantiating the feasibility of this method. Finally, the comparative analysis verified that a CAH with a relative vertical distance of 3 mm and a diameter of 2 mm exhibited superior improvement in the comprehensive performance on the bone plate.  相似文献   

2.
Articular stress fracture arising from the distal end of the third metacarpal bone (MC3) is a common serious injury in Thoroughbred racehorses. Currently, there is no method for predicting fracture risk clinically. We describe an ex-vivo biomechanical model in which we measured subchondral crack micromotion under compressive loading that modeled high speed running. Using this model, we determined the relationship between subchondral crack dimensions measured using computed tomography (CT) and crack micromotion. Thoracic limbs from 40 Thoroughbred racehorses that had sustained a catastrophic injury were studied. Limbs were radiographed and examined using CT. Parasagittal subchondral fatigue crack dimensions were measured on CT images using image analysis software. MC3 bones with fatigue cracks were tested using five cycles of compressive loading at -7,500N (38 condyles, 18 horses). Crack motion was recorded using an extensometer. Mechanical testing was validated using bones with 3 mm and 5 mm deep parasagittal subchondral slots that modeled naturally occurring fatigue cracks. After testing, subchondral crack density was determined histologically. Creation of parasagittal subchondral slots induced significant micromotion during loading (p<0.001). In our biomechanical model, we found a significant positive correlation between extensometer micromotion and parasagittal crack area derived from reconstructed CT images (SR = 0.32, p<0.05). Correlations with transverse and frontal plane crack lengths were not significant. Histologic fatigue damage was not significantly correlated with crack dimensions determined by CT or extensometer micromotion. Bones with parasagittal crack area measurements above 30 mm2 may have a high risk of crack propagation and condylar fracture in vivo because of crack micromotion. In conclusion, our results suggest that CT could be used to quantify subchondral fatigue crack dimensions in racing Thoroughbred horses in-vivo to assess risk of condylar fracture. Horses with parasagittal crack arrays that exceed 30 mm2 may have a high risk for development of condylar fracture.  相似文献   

3.
Previous studies of the fracture properties of cortical bone have suggested that the fracture toughness increases with crack length, which is indicative of rising R-curve behavior. Based on this indirect evidence and the similarity of bone to ceramic matrix composites, we hypothesized that bone would exhibit rising R-curve behavior in the transverse orientation and that the characteristics of the R-curves would be regionally dependent within the cortex due to variations in bone microstructure and toughening mechanisms. To test these hypotheses, we conducted R-curve experiments on specimens from equine third metacarpal bones using standard fracture mechanics testing methods. Compact type specimens from the dorsal and lateral regions in the middle of the diaphysis were oriented for crack propagation transverse to the longitudinal axis of the bone.The test results demonstrate that equine cortical bone exhibits rising R-curve behavior during transverse crack propagation as hypothesized. Statistical analyses of the crack growth initiation toughness, K0, the peak toughness, Kpeak, and the crack extension at peak toughness, deltaa, revealed significant regional differences in these characteristics. Specifically, the lateral cortex displayed higher crack growth initiation and peak toughnesses. The dorsal cortex exhibited greater crack extension at the peak of crack growth resistance. Scanning electron microscopy revealed osteon pullout on fracture surfaces from the dorsal cortex and but not in the lateral cortex. Taken together, the significant differences in R-curves and the SEM fractography indicate that the fracture mechanisms acting in equine cortical bone are regionally dependent.  相似文献   

4.
Third-generation mechanical analogue bone models and synthetic analogue cortical bone materials manufactured by Pacific Research Laboratories, Inc. (PRL) are popular tools for use in mechanical testing of various orthopedic implants and biomaterials. A major issue with these models is that the current third-generation epoxy-short fiberglass based composite used as the cortical bone substitute is prone to crack formation and failure in fatigue or repeated quasistatic loading of the model. The purpose of the present study was to compare the tensile and fracture mechanics properties of the current baseline (established PRL "third-generation" E-glass-fiber-epoxy) composite analogue for cortical bone to a new composite material formulation proposed for use as an enhanced fourth-generation cortical bone analogue material. Standard tensile, plane strain fracture toughness, and fatigue crack propagation rate tests were performed on both the third- and fourth-generation composite material formulations using standard ASTM test techniques. Injection molding techniques were used to create random fiber orientation in all test specimens. Standard dog-bone style tensile specimens were tested to obtain ultimate tensile strength and stiffness. Compact tension fracture toughness specimens were utilized to determine plane strain fracture toughness values. Reduced thickness compact tension specimens were also used to determine fatigue crack propagation rate behavior for the two material groups. Literature values for the same parameters for human cortical bone were compared to results from the third- and fourth-generation cortical analogue bone materials. Tensile properties of the fourth-generation material were closer to that of average human cortical bone than the third-generation material. Fracture toughness was significantly increased by 48% in the fourth-generation composite as compared to the third-generation analogue bone. The threshold stress intensity to propagate the crack was much higher for the fourth-generation material than for the third-generation composite. Even at the higher stress intensity threshold, the fatigue crack propagation rate was significantly decreased in the fourth-generation composite compared to the third-generation composite. These results indicate that the bone analogue models made from the fourth-generation analogue cortical bone material may exhibit better performance in fracture and longer fatigue lives than similar models made of third-generation analogue cortical bone material. Further fatigue testing of the new composite material in clinically relevant use of bone models is still required for verification of these results. Biomechanical test models using the superior fourth-generation cortical analogue material are currently in development.  相似文献   

5.
An experimental compliance calibration method for measuring crack length in fracture toughness tests of cortical bone was developed. Calibration tests were conducted on twenty compact type fracture specimens machined from the mid-diaphysis of five pairs of equine third metacarpal bones. Specimens were oriented for crack propagation in a direction transverse to the longitudinal axis of the bone. Specimen compliance was determined from the load vs. crack opening displacement record over a range of crack lengths from 0.48 to 0.75 times the specimen width. The results demonstrate that the compliance calibration method developed for isotropic materials can be used to determine crack length in bone, which is transversely isotropic. However, specimens from lateral and dorsal regions exhibited significantly different compliance calibrations even after differences in elastic modulus were taken into account in the normalized compliance.  相似文献   

6.
Differential expression of fibrillar collagen genes during callus formation   总被引:5,自引:0,他引:5  
An experimental fracture healing model in the rat tibio-fibular bone was employed to study the appearance of messenger RNAs for types I, II and III collagens during endochondral fracture repair. Total RNA was extracted from normal bone and from callus tissue at various time points. The total RNAs were analyzed in Northern hybridization for their contents of procollagen mRNAs using specific cDNA clones. The results show that during the first week of fracture repair type III collagen mRNA is increased to the greatest extent, followed by type II collagen mRNA during the second week. The 28-day callus resembles bone by containing mainly type I collagen mRNAs and very little type II or III collagen mRNA.  相似文献   

7.
When testing for the effects of bone orientation on mode I fracture toughness, compact tension specimens are grooved with a V-notch to provide a crack guide. The effect of grooving on the expressions for the critical stress intensity factor (Kc) and the critical strain energy release rate (Gc) for mode I fracture toughness was investigated. Experiments were performed using grooved and ungrooved bovine compact tension specimens. The results indicate that the standard expression used to determine Kc for a compact tension specimen requires modification. The thickness (B) must be modified to account for the thickness between the grooves (Bn). The thickness used in the standard expression is replaced by an effective thickness written as (BBn)0.5. It was also found that the thickness between the grooves should be used in the standard formula for Gc.  相似文献   

8.
Summary The distribution of types I, II, III, V and IX collagens in healing fractures of the rabbit tibia has been demonstrated by immunofluorescent techniques. It has also been shown that the mechanical stability of the healing fracture affects both the distribution and types of the collagens present.The initial fibrous matrix contains types III and V collagens; type I collagen was only located in this matrix if unfixed tissue was used. In mechanically stable fractures, cancellous bone forms over the entire periosteal surface by 5–7 days; type I collagen is laid down within the previous fibrous matrix. The trabeculae are heterogeneous in their collagen content. The cavities contain a matrix of types III and V collagens. Small nodules of cartilage may be present between 7 and 14 days; these contain types II and IX collagens.In mechanically unstable fractures, cancellous bone is initially formed away from the fracture gap. The fibrous tissue over the gap is replaced by cartilage; types II and IX collagens are laid down on the pre-existing fibrous matrix. The cartilage is replaced by endochondral ossification. At the ossification front, type I collagen is found around the chondrocyte lacunae of the spicules of cartilage. The new trabeculae contain a core of cartilage which is surrounded by a bone matrix of types I and V collagens.The fracture gaps are invaded by fibrous tissue, which contain types III and V collagens. This is later replaced by cancellous bone.  相似文献   

9.
In a quest for more effective radiopharmaceuticals for pain palliation of metastatic bone cancer, this paper relates results obtained with 166Ho and 153Sm complexed to the bone seeking phosphonate, N,N-dimethylenephosphonate-1-hydroxy-4-aminopropylidenediphosphonate (APDDMP). APDDMP is synthesised from the known bone cancer pain palliation agent 1-hydroxy-3-aminopropylidenediphosphonate (APD) and was complexed to lanthanide trivalent metal ions. This work is performed to utilise the idea that the energetic beta-particle emitter, 166 Ho, coupled with phosphonate ligands such as APD and APDDMP could afford a highly effective radiopharmaceutical in the treatment of bone cancer. Complex-formation constants of APDDMP with the important blood plasma metal-ions, Ca2+, Mg2+, and Zn2+ and the trivalent lanthanides Ho3+ and Sm3+ were measured by glass electrode potentiometry at 37 degrees C and I = 150 mM. Blood plasma models were constructed using the computer code ECCLES and the results compared with those gathered from animal tests. The 166Ho-APDDMP complex was found to have little liver or bone uptake while 153Sm-APDDMP had a moderate bone uptake. This was primarily due to the high affinity of APDDMP for Ca(II). Clinical observations could be explained by the blood plasma modelling.  相似文献   

10.
A novel mixed-mode high performance liquid chromatographic system (HPLC) interfaced with an atmospheric pressure chemical ionization (APCI) source and a tandem mass spectrometer (MS/MS) was developed for the determination of cytarabine (ara-C) in mouse plasma to support pharmacodynamic studies. The mixed-mode reversed-phase ion-exchange chromatography column was adapted for sufficient retention and separation of a small and polar analyte. The impact of the mobile phase composition on both chromatographic separation and the ionization efficiency of the test compound in the positive mode was investigated. The potential of ionization suppression from endogenous biological matrices on the mixed-mode LC-APCI/MS/MS method was evaluated using the post-column infusion technique. Furthermore, the feasibility of using the mixed-mode HPLC-MS/MS method for the determination of the plasma concentrations of cytarabine in mice was demonstrated by comparing those obtained by the ion-pairing HPLC-MS/MS method.  相似文献   

11.
Fracture mechanics studies have characterized bone's resistance to fracture in terms of critical stress intensity factor and critical strain energy release rate measured at the onset of a fracture crack. This approach, although useful, provide a limited insight into fracture behavior of bone because, unlike classical brittle materials, bone is a microcracking solid that derives its resistance to fracture during the process of crack propagation from microfracture mechanisms occurring behind the advancing crack front. To address this shortfall, a crack propagation-based approach to measure bone toughness is described here and compared with crack initiation approach. Post hoc analyses of data from previously tested bovine and antler cortical bone compact specimens demonstrates that, in contrast to crack initiation approach, the crack propagation approach successfully identifies the superior toughness properties of red deer's antler cortical bone. Propagation-based slope of crack growth resistance curve is, therefore, a more useful parameter to evaluate cortical bone fracture toughness.  相似文献   

12.
5-Fluorouracil (5-FU) is a fluoropyrimidine group antineoplastic drug with antimetabolite properties and ovotoxicity is one of the most important side effects. Silibinin (SLB) is a natural compound that is used worldwide and stands out with its antioxidant and anti-inflammatory properties. The aim of this study was to evaluate the therapeutic effect of SLB in 5-FU-induced ovototoxicity using biochemical and histological analysis. This study was carried out in five main groups containing six rats in each group: control, SLB (5 mg/kg), 5-FU (100 mg/kg), 5-FU + SLB (2.5 mg/kg), and 5-FU + SLB (5 mg/kg). The levels of ovarian malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), superoxide dismutase (SOD), catalase (CAT), 8-hydroxy-2′-deoxyguanosine (8-OHdG), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and caspase-3 were determined using spectrophotometric methods. Hematoxylin and eosin staining method was employed for histopathological examination. MDA, TOS, 8-OHdG, TNF-α, MPO, and caspase-3 levels in 5-FU group were significantly increased compared with the control group, while the levels of TAS, SOD, and CAT were decreased (p < 0.05). SLB treatments statistically significantly restored this damage in a dose-dependent manner (p < 0.05). Although vascular congestion, edema, hemorrhage, follicular degeneration, and leukocyte infiltration were significantly higher in the 5-FU group compared with the control group, SLB treatments also statistically significantly restored these damages (p < 0.05). In conclusion, SLB has a therapeutic effect on the ovarian damage induced by 5-FU via decreasing the levels of oxidative stress, inflammation, and apoptosis. It may be helpful to consider the usefulness of SLB as an adjuvant therapy to counteract the side effects of chemotherapy.  相似文献   

13.
Bone is an anisotropic material with a hierarchical structure consisting of organic matrix, minerals and water. Fracture toughness (K(C)) has been shown to be a good index to assess the mechanical performance of bone. A chevron-notched (CN) beam test, a standard fracture mechanics test successfully applied to many other materials, was used to determine the transverse-direction fracture toughness in manatee rib and bovine femur cortical bone. Although human and bovine bone has been well studied, there is virtually no information on the toughness of manatee rib bone. As a biological material, manatee rib is interesting for study in that it is a highly mineralized bone. Three major advantages of the CN specimen test are: (1) it is easier to reach plane strain condition; (2) there is no fatigue-precracking needed; and (3) it is relatively easy to produce stable crack propagation before catastrophic fracture. The fracture toughness values of manatee rib and bovine femur were measured to be 4.5 +/- 0.5 MPa m(1/2) and 5.8 +/- 0.5 MPa m(1/2), respectively. Based on the microstructures shown in SEM images, two features that contributed to the greater fracture toughness of bovine femur were identified as greater osteon density and lesser porosity.  相似文献   

14.
In vivo, bone cement is subject to cyclic loading in a fluid environment. However, little is known about the effect of moisture absorption on the fatigue crack propagation resistance of bone cement. The effect of moisture absorption at 37 degrees C on the fatigue crack propagation resistance of a common bone cement (Endurance, DePuy, Orthopaedics, Inc.) was examined. Preliminary fracture toughness tests were conducted on disk-shaped, vacuum-mixed cement specimens (compact tension type) that were cyclically pre-cracked. Plain-strain fracture toughness K(IC) (MPa square root(m)) was determined. To study the effect of moisture absorption four treatment groups, with different soaking periods in Ringer's at 37 degrees C, of Endurance cement were tested. The specimens weights prior to and following soaking showed a significant increase in mean weight for specimens soaked for 8 and 12 weeks. Linear regression analysis of log(da/dN) vs. log (deltaK) was conducted on the combined data in each fatigue test group. Soaking bone cement in Ringer's at 37 degrees C for 8 and 12 weeks lead to an improvement in fatigue crack propagation resistance, that may be related to water sorption that increases polymer chain mobility, with enhanced crack tip blunting. It may be more physiologically relevant to conduct in vitro studies of fatigue and fracture toughness of bone cements following storage in a fluid environment.  相似文献   

15.
The strain Janthinobacterium sp. SLB01 was isolated from the diseased freshwater sponge Lubomirskia baicalensis (Pallas, 1776) and the draft genome was published previously. The aim of this work is to analyze the genome of the Janthinobacterium sp. SLB01 to search for pathogenicity factors for Baikal sponges. We performed genomic analysis to determine virulence factors, comparing the genome of the strain SLB01 with genomes of other related J. lividum strains from the environment. The strain Janthinobacterium sp. SLB01 contained genes encoding violacein, alpha-amylases, phospholipases, chitinases, collagenases, hemolysin, and a type VI secretion system. In addition, the presence of conservative clusters of genes for the biosynthesis of secondary metabolites of tropodithietic acid and marinocine was found. We present genes for antibiotic resistance, including five genes encoding various lactamases and eight genes for penicillin-binding proteins, which are conserved in all analyzed strains. Major differences were found between the Janthinobacterium sp. SLB01 and J. lividum strains in the spectra of genes for glycosyltransferases and glycoside hydrolases, serine hydrolases, and trypsin-like peptidase, as well as some TonB-dependent siderophore receptors. Thus, the study of the analysis of the genome of the strain SLB01 allows us to conclude that the strain may be one of the pathogens of freshwater sponges.  相似文献   

16.
17.
A fracture mechanics study of cortical bone is presented to investigate the contribution, development morphology of microcracking in cortical bone during crack propagation. Post-hoc analyses of microcrack orientation, crack propagation velocity and fracture surface roughness were conducted on previously tested human and bovine bone compact tension specimens. It was found that, consistent with its higher toughness, bovine bone formed significantly more longitudinal, transverse and inclined microcracks than human bone. However, in human bone more of the microcracks that formed were longitudinal than transverse or inclined, a feature that would optimise bone's toughness. Crack propagation velocity in human and bovine bone displayed the same characteristic pattern with crack extension, where an increase in velocity is followed by a consequent decrease and vice versa. On the basis of this pattern, a model or crack propagation has been proposed. It provides a detailed account of mocrocrack formation and contribution towards the propagation of a fracture crack. Analyses of fracture surfaces indicated that, consistent with its higher toughness, bovine bone displays a rougher surface than human bone but they both have the same basic fractured element, i.e. a mineralised collagen fibril.  相似文献   

18.
Nasal bone fractures are the most common among facial fractures and are the third most common fractures in the human frame. Although many forms of treatment have been introduced, controversy regarding the optimal treatment still remains. Nasal bone fractures are complex, with significantly varying types that are often undermanaged in closed reduction procedures. The authors' experiences with nasal bone fractures have shown that the baseline for surgical intervention depends on the type of fracture and the method of maintenance after reduction, both of which have considerable impact on the final result. Therefore, it is very important and challenging to determine the proper method of reduction and maintenance. The periosteal covering plays an important role in the splinting action after closed reduction, but sagging, depression, and instability remain major complications in some cases. The authors devised a new method of accurate, firm stabilization of the fractured nasal bone by using external pins in those unfavorable fractures determined radiologically to gain optimal reduction and fixation. In the present study, fractures were grouped into favorable and unfavorable fractures, the latter being those that remained unstable or impacted even after reduction and thus needed open reduction. Unfavorable fractures were divided into four subclasses according to radiologic findings: (1) type I (frontal), including chip or tip fractures, which often depress the upper lateral cartilage and tend to sag after reduction; (2) type II (lateral), or laterally depressed segmental fractures with a lateral shift of the arch in fragments or as a unit; (3) type III (mixed), or type II with septal involvement; and (4) type IV (complex), including open or multiple comminuted fractures. After an initial evaluation to determine the fracture type, closed reduction and external fixation were performed for types I, II, and III fractures and open reduction was performed for type IV fractures 5 to 7 days after the fracture. Closed reduction with the use of external pins was done in eight cases: type I (two), type II (four), and type III (two). The mean age of the patients was 27.8 years, and the average follow-up period was 11.7 months. Functional and aesthetic results were satisfactory. This new method for support and fixation is an alternative to the conventional closed reduction and a promising way to prevent secondary deformity.  相似文献   

19.
Haploids, diploids and tetraploids of Cyclamen persicum (2n=x=24, 2x=48 and 4x=96), C. graecum (2n=84) and their interspecific hybrids (2n=45, 3x=66, 4x=90) were analyzed cytologically. The mean chromosome association per PMC at diakinesis or at metaphase I in meiosis was 23.29–23.39 I + 0.31–0.36 II in C. persicum (x), 0.17–0.23 I + 23.88–23.92 II in C. persicum (2x), 0.52–1.18 I + 46.39–46.78 II + 0.03–0.09 III + 0.41–0.48IV in C. persicum (4x) and 0.40–0.46I + 41.34–41.63 II + 0.02 III + 0.07–0.21IV in C. graecum. The mean chromosome association per PMC at diakinesis or at metaphase I was 0.47–0.62 I + 44.69–44.76 II in the hybrid (2n=90) of C. persicum (4x) × C. graecum, 38.48–42.50 I + 1.27–3.26 II in microspore-derived plants (2n=45) from the hybrid (2n=90) by anther culture and 26.22–26.67 I + 19.67–19.89 II in the hybrid (2n=66) of C. persicum (2x) × C. graecum. The results indicate that C. graecum is an autotetraploid, the hybrid (2n=4x=90) is an amphidiploid, the microspore-derived plant (2n=45) is a polyhaploid and the hybrid (2n=3x=66) is a sesquidiploid. Based on studies of meiosis, the ploidy levels and the origin of C. graecum and C. persicum are discussed in comparison with several species in the genus Cyclamen.  相似文献   

20.
The recent studies have shown that long-term bisphosphonate use may result in a number of mechanical alterations in the bone tissue including a reduction in compositional heterogeneity and an increase in microcrack density. There are limited number of experimental and computational studies in the literature that evaluated how these modifications affect crack initiation and propagation in cortical bone. Therefore, in this study, the entire crack growth process including initiation and propagation was simulated at the microscale by using the cohesive extended finite element method. Models with homogeneous and heterogeneous material properties (represented at the microscale capturing the variability in material property values and their distribution) as well as different microcrack density and microstructure were compared. The results showed that initiation fracture resistance was higher in models with homogeneous material properties compared to heterogeneous ones, whereas an opposite trend was observed in propagation fracture resistance. The increase in material heterogeneity level up to 10 different material property sets increased the propagation fracture resistance beyond which a decrease was observed while still remaining higher than the homogeneous material distribution. The simulation results also showed that the total osteonal area influenced crack propagation and the local osteonal area near the initial crack affected the crack initiation behavior. In addition, the initiation fracture resistance was higher in models representing bisphosphonate treated bone (low material heterogeneity, high microcrack density) compared to untreated bone models (high material heterogeneity, low microcrack density), whereas an opposite trend was observed at later stages of crack growth. In summary, the results demonstrated that tissue material heterogeneity, microstructure, and microcrack density influenced crack initiation and propagation differently. The findings also elucidate how possible modifications in material heterogeneity and microcrack density due to bisphosphonate treatment may influence the initiation and propagation fracture resistance of cortical bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号