首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lab-scale continuous flow activated sludge systems that were acclimated to 2,4-dichlorphenoxyacetic acid (2,4-D) under sole 2,4-D influent and without sludge wastage, were able to maintain successful 2,4-D treatment when both 2,4-D and a biogenic substrate were fed and the systems operated with finite mean cell residence times (theta(c)). When the systems were fed dual 2,4-D and biogenic substrates and operated with finite theta(c) from the start, treatment of 2,4-D fluctuated noticeably long after acclimation. At the reintroduction of 2,4-D after its absence from the influent for a period of time (2,4-D shock), the systems under both the sole and dual substrate conditions suffered similar treatment losses; the extent of treatment losses was related to the length of 2,4-D absence time. When shocked, systems with sole 2,4-D influent had a slight advantage over dual substrates by showing a faster recovery from shocks with the help of re-acclimation.  相似文献   

2.
Nyuk-Min Chong   《Bioresource technology》2009,100(23):5750-5756
This work established a mathematical model that formulated degrader formation by conversion of indigenous microbial cells. Degrader conversion is attributed to genetic induction whose force is dependent on the strength of acclimating xenobiotic and the amount of indigenous cells. After successful conversion, which requires an amount of time proportionate to the lag, degraders grow on the xenobiotic substrate. This model formulated the lag and degrader formation with the sigmoid function and degrader growth with the Haldane kinetics. The model so completed accurately simulates the degradation and biomass courses during acclimation and degradation of a xenobiotic by indigenous activated sludge, wherein the factors relating to the acclimation process are given values. The model serves the need for a rational representation of microbial acclimation to a xenobiotic.  相似文献   

3.
Chong NM  Wang CH  Ho CH  Hwu CS 《Bioresource technology》2011,102(5):4069-4075
The biomass yield of a continuous flow activated sludge system varied when the system treated influent containing different compositions of biogenic and xenobiotic substrates. Both the biogenic substrate and a test xenobiotic 2,4-dichlorophenoxyacetic acid (2,4-D) were degraded at steady-state activated sludge operations. The true yields, determined from steady-state activated sludge treatment performances, were at the maximum and the minimum when the activated sludge treated the influent of sole biogenic substrate and sole 2,4-D, respectively. The minimum yield was 56% of the maximum. Yield reduction between the maximum and the minimum was proportional to the concentration of 2,4-D in the influent. This trend of yield reduction suited a model that describes the metabolic uncoupling effect of 2,4-D on the sludge's degradation of the substrates. The model function variable was defined as the ratio of 2,4-D to biogenic COD concentrations in the influent.  相似文献   

4.
An activated sludge plant was established which was capable of treating an influent containing morpholine. When this compound was deleted from the influent the ability of the activated sludge to degrade morpholine was reduced. This reduction took the form of an increase in the length of the lag period before morpholine degradation was detected in a die-away test from 0 to ca 1000 h. The decreased ability of the activated sludge to degrade morpholine was accounted for by a decline in the specific population of morpholine-degrading microbes. In this activated sludge all morpholine degraders were Mycobacterium spp. In the absence of morpholine in the influent most mycobacteria in the activated sludge retained their morpholine-degrading phenotypes. This is despite the fact that some of these organisms can lose this phenotype when grown under non-selective conditions. These results are discussed in relation to other work on the degradation of morpholine and to problems in the treatment of xenobiotic compounds in industrial effluents.  相似文献   

5.
Evolutionary operation (EVOP) was used to experimentally investigate the optimum steady state operating conditions for a step aeration activated sludge waste treatment process. A laboratory scale two tank step aeration activated sludge unit with fixed total volume, total influent flow rate, recycle flow rate, and sludge wasting rate was employed. The volume ratio and flow rate ratio which minimized effluent chemical oxygen demand were determined. The results indicate that EVOP is a useful technique for improving the performance of biological processes.  相似文献   

6.
Summary Changing from a continuous feeding to an intermittent feeding selects for floc-forming micro-organisms in activated sludge systems. Previous research stressed the importance of the substrate uptake rate. In order to explain this shift in population the uptake kinetics of pure cultures of Sphaerotilus natans (filament) and Arthrobacter (floc-former) were examined with glucose as C-source.Batch experiments indicated a severe decrease in uptake capacity at the end of the declining growth phase.The results with continuously and intermittently fed chemostats indicated a profound influence of periodic feeding on the metabolism of pure cultures; steady state dry weights were lower, substrate uptake over-capacity was larger, more over-flow metabolites were produced. Higher Km values for substrate uptake were recorded and more reserve materials were built. More important, the over-capacity in I-fed cultures of the floc-forming micro-organism was larger than for the filamentous bacterium. In ecological perspective this may explain the selection of a floc-forming biomass in activated sludge systems with temporary higher BOD-concentrations or operating in plug-flow.  相似文献   

7.
Evaluation of methods to solubilize and analyze cell-associated ectoenzymes   总被引:4,自引:0,他引:4  
A protocol for production, storage, and use of Shock 1 (Shk1) bioreporter cells for toxicity monitoring in wastewater treatment facilities was developed. Shk1 is a bioluminescent toxicity bioreporter for activated sludge previously constructed by the incorporation of lux genes into an activated sludge microorganism.

A number of factors affecting Shk1 growth and bioluminescence were examined including the growth medium, tetracycline concentration, storage conditions, and test media. Based on the results of these experiments, a toxicity testing protocol was developed that involved growth of cultures in nutrient broth with tetracycline, storage of cultures at 4 °C, cell activation by reinoculation into nutrient broth, and toxicity testing by cell injection into the test media. Effective use of this approach required standardized time intervals for cell growth, storage, activation and exposure in the test media.

Bioluminescence from Shk1 cells was measured in nutrient broth and influent wastewater and activated sludge mixed liquor from a municipal wastewater treatment plant. Using the Shk1 toxicity testing protocol, Zn EC50 values for bioluminescence in nutrient broth, influent wastewater, and activated sludge mixed liquor were approximately 42, 7, and 32 mg/l, respectively. Zn concentrations as low as 1 mg/l could be detected in influent wastewater. The detection limit in influent wastewater is below the Zn concentrations typically reported to affect the activated sludge process.  相似文献   


8.
The applicability of the model derived by Ramanathan and Gaudy (Biotechnol. Bioeng., 11, 207, (1969)) for completely mixed activated sludge treatment holding the recycle solids concentration as a system constant was investigated using an actual industrial organic wastewater. Short-term experiments were conducted at various dilution rates (1/8, 1/6, 1/4, 1/2, 1/1.5 hr-1) for two recycle solids concentration values (5000 and 7000 mg/liter). The influent substrate concentration was maintained at 1000 mg/liter COD and the hydraulic recycle ratio- alpha, was kept at 0.3. It was found that for bottling plant (Pepsi Cola) wastewaters, a steady state with respect to reactor biological solids and effluent COD, at different dilution rates, could be attained, lending experimental evidence to the assumption that a steady state could be reached in developing the model and also affecting the applicability of the model in industrial organic wastewater. The reactor biological solids and effluent COD calculated from the model closely agreed with the observed values at dilution rates lower than 0.5 hr-1. Operation at dilution rates higher than 0.5 hr-1 will washout the biological solids from the reactor and the recycle substrate concentration will be apparent if the concentration of XR were not increased.  相似文献   

9.
The effectiveness of bioaugmentation in the improvement of the start-up of a biofilm airlift reactor to perform partial nitrification was investigated. Two identical biofilm airlift reactors were inoculated. The non-bioaugmented reactor (NB-reactor) was inoculated with conventional activated sludge, whereas the bioaugmented reactor (B-reactor) was seeded with the same conventional activated sludge but bioaugmented with nitrifying activated sludge from a pilot plant performing full nitritation under stable conditions (100% oxidation of influent ammonium to nitrite). The fraction of specialized nitrifying activated sludge in the inoculum of the B-reactor was only 6% (measured as dry matter). To simplify comparison of the results, operational parameters were equivalent for both reactors. Partial nitrification was achieved significantly faster in the B-reactor, showing a very stable operation. The results obtained by fluorescence in situ hybridization assays showed that the specialized nitrifying biomass added to the B-reactor remained in the biofilm throughout the start-up period.  相似文献   

10.
The effect of pH on the efficiency of an SBR processing piggery wastewater   总被引:1,自引:0,他引:1  
To treat piggery wastewater efficiently, the hydrolysis of urea (mainly derived from swine urine) in piggery wastewater with the change of sewage pH must be considered. Using activated sludge, piggery wastewater was treated in a sequencing batch reactor (SBR), and the effects of influent pH on SBR processing efficiency, sludge settle ability, and sludge activity were investigated. The results showed that a high influent pH value contributed to the improvement of the removal rate of ammonia nitrogen and reduction of the chemical oxygen demand (COD). When the influent pH was between 9.0 and 9.5, the removal rate of ammonia nitrogen was higher than 90%, and the reduction of COD from its original value was 80%. The influent pH had a greater influence on sludge concentration and sludge activity. When the influent pH increased from 7.0 to 9.5, the sludge concentration increased from 2,350 to 3,947 mg/L in the reactor, and the activities of ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) first increased and then decreased. When the influent pH was 9.0 and 8.0, the maximum values (0.48 g O2/(g MLSS/day) and 0.080 g O2/(g MLSS/day)) were reached, and the sludge settling ratio was nearly steady between 20 and 35% in each reactor.  相似文献   

11.
The objectives of this work were the examination of the performance of two bench scale activated sludge systems, a conventional Continuous Stirring Tank Reactor (CSTR) and a Sequential Batch Reactor (SBR), for the treatment of wastewaters containing phenol and cyanides and the assessment of the toxicity reduction potential by bioassays. The operation of the reactors was monitored by physicochemical analyses, while detoxification potential of the systems was monitored by two bioassays, the marine photobacterium Vibrio fischeri and the ciliate protozoan Tetrahymena thermophila. The reactors influent was highly toxic to both organisms, while activated sludge treatment resulted in the reduction of toxicity of the influent. An increased toxicity removal was observed in the SBR; however CSTR system presented a lower ability for toxicity reduction of influent. The performance of both systems was enhanced by the addition of powdered activated carbon in the aeration tank; activated carbon upgraded the performance of the systems due to the simultaneous biological removal of pollutants and to carbon adsorption process; almost negligible values of phenol and cyanides were measured in the effluents, while further toxicity reduction was observed in both systems.  相似文献   

12.
Summary Laboratory scale activated sludge systems were operated under regimes of continuous or intermittent feeding of substrate. In a previous paper it was shown that continuously operated systems resulted in the development of filamentous bacteria and bulking sludges. Intermittently fed sludges resulted in good settling. These results are now confirmed when substrates other than glucose are present in the influent, such as nutrient broth, acetate and starch. With casein deflocculation occurred. For intermittent systems the substrate removal rates were higher than for continuous systems. Based on the results a theory is presented to account for the growth of filamentous bacteria (and bulking) in continuous systems (completely mixed systems). This theory assumes that in intermittently fed systems (plug flow systems) floc forming bacteria become dominant as a result of higher substrate uptake rates and the possibility to survive a starvation phase by thriving on accumulated intracellular metabolites.  相似文献   

13.
A metabolic model of the biological phosphorus removal process has been developed and validated previously for complex conversions during the process under anaerobic and aerobic conditions at different growth rates in sequencing batch reactors in steady state. For additional validation of the metabolic model, the model was applied to the dynamic conditions which occur during the start-up phase of the biological P removal in the presence and absence of non-polyP heterotrophic microorganisms. In a laboratory scale sequencing batch reactor, experiments were performed to examine the enrichment of the population with polyphosphate organisms during the start-up and the subsequent shift from non-polyP, heterotrophic organisms to polyP organisms in the sludge. The effect of different influent loading patterns for acetate and phosphate was studied. In these experiments, the maximal growth rate of the polyP organisms and the behavior of the internal storage compounds could be derived. The metabolic model was capable of describing the experimental results, without the need to adjust the kinetic or stoichiometric parameters obtained under steady state conditions. (c) 1995 John Wiley & Sons, Inc.  相似文献   

14.
A novel styrene monooxygenase (SMO) was isolated from Pseudomonas sp. LQ26, a styrene degrader from activated sludge. Sequence alignment demonstrated that it was the most distant member of all SMOs originating from the genus of Pseudomonas. The substrate spectrum of this enzyme extended beyond typical SMO substrates to 1-allylbenzene analogues, previously reported as non-substrates for the SMO from Pseudomonas fluorescens ST. The results demonstrate for the first time the asymmetric epoxidation of both conjugated and unconjugated alkenes catalyzed by SMO and suggest that a much broader substrate spectrum is expected for SMOs.  相似文献   

15.
The occurrence, distribution and activity of archaeal populations within two aerated, activated sludge wastewater treatment systems, one treating domestic waste and the second treating mixed domestic and industrial wastewater, were investigated by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified ribosomal RNA gene fragments and process measurements. In the plant receiving mixed industrial and domestic waste the archaeal populations found in the mixed liquor were very similar to those in the influent sewage, though a small number of DGGE bands specific to the mixed liquor were identified. In contrast, the activated sludge treating principally domestic waste harboured distinct archaeal populations associated with the mixed liquor that were not prevalent in the influent sewage. We deduce that the Archaea in the plant treating mixed wastewater were derived principally from the influent, whereas those in the plant treating solely domestic waste were actively growing in the treatment plant. Archaeal 16S rRNA gene sequences related to the Methanosarcinales, Methanomicrobiales and the Methanobacteriales were detected. Methanogenesis was measured in activated sludge samples incubated under oxic and anoxic conditions, demonstrating that the methanogens present in both activated sludge plants were active only in anoxic incubations. The relatively low rates of methanogenesis measured indicated that, although active, the methanogens play a minor role in carbon turnover in activated sludge.  相似文献   

16.
Starvation is not a prerequisite for the formation of aerobic granules   总被引:1,自引:0,他引:1  
Activated sludge with sludge volume index (SVI)30 of 77 ml g−1 and SVI30 of 433 ml g−1 was inoculated to start up reactors R1 and R2, respectively. In both R1 and R2, cycle time of 1 h and the influent chemical oxygen demand (COD) concentrations of 1,000 mg l−1 were employed. Initial settling time of 2 min resulted in the loss of a substantial amount of biomass as wash-out and high effluent COD concentrations within the first week of operation. This implied that there was no starvation phase in each cycle of R1 and R2 during the first week of operation. However, aerobic granules with a size above 400 μm formed by day 7. Thus, it was concluded that starvation was not a prerequisite for the formation of aerobic granules. When cycle time was 1 h, the instability of aerobic granules was observed. When cycle time was prolonged to 1.5 h and granular sludge of 200 ml was used to start up reactor R3, the reactor R3 reached steady state within 1 week. SVI, size, and the morphology of granular sludge in R3 remained stable during the 47-day operation, which indicated that prolonged starvation time had positive effects on the stability of aerobic granules.  相似文献   

17.
The main purpose of this paper is to study naphthalene (NAP) biodegradation by acclimated activated sludge, employing the culture-enrichment method in a continuous flow bioreactor of the wastewater treatment process. The effects of various COD loadings and influent flow rates of an artificial wastewater containing 15 mg l−1 NAP on the biodegradation rates of the activated sludge will be investigated, in order to determine the biodegradation kinetics and minimum mean cell residence time of the activated sludge. From the experimental results, it was found that the resulting enriched activated sludge follows the growth rate of the Monod type and can biodegrade those COD and NAP loadings in the influents efficiently, and its bio-treatment efficiency on NAPs increases with the decrease of influent flow rate. The sludge volume index (SVI) of the resulting enriched activated sludge meets the design value required by the convectional activated sludge process for the treatment of wastewater.  相似文献   

18.
A mathematical model is developed to describe the growth of multiple microbial species such as heterotrophs and autotrophs in activated sludge system. Performance of a lab-scale sequencing batch reactor involving storage process is used to evaluate the model. Results show that the model is appropriate for predicting the fate of major model components, i.e., chemical oxygen demand, storage polymers (X STO), volatile suspended solid (VSS), ammonia, and oxygen uptake rate (OUR). The influence of sludge retention time (SRT) on reactor performance is analyzed by model simulation. The biomass components require different time periods from one to four times of SRT to reach steady state. At an SRT of 20 days, the active bacteria (autotrophs and heterotrophs) constitute about 57% of the VSS; the remaining biomass is not active. The model established demonstrates its capacity of simulating the reactor performance and getting insight in autotrophic and heterotrophic growth in complex activated sludge systems.  相似文献   

19.
Pharmaceuticals are often not fully removed in wastewater treatment plants (WWTPs) and are thus being detected at trace levels in water bodies all over the world posing a risk to numerous organisms. These organic micropollutants (OMPs) reach WWTPs at concentrations sometimes too low to serve as growth substrate for microorganisms; thus, co-metabolism is thought to be the main conversion mechanism. In this study, the microbial removal of six pharmaceuticals was investigated in a membrane bioreactor at increasing concentrations (4–800 nM) of the compounds and using three different hydraulic retention times (HRT; 1, 3.5 and 5 days). The bioreactor was inoculated with activated sludge from a municipal WWTP and fed with ammonium, acetate and methanol as main growth substrates to mimic co-metabolism. Each pharmaceutical had a different average removal efficiency: acetaminophen (100%) > fluoxetine (50%) > metoprolol (25%) > diclofenac (20%) > metformin (15%) > carbamazepine (10%). Higher pharmaceutical influent concentrations proportionally increased the removal rate of each compound, but surprisingly not the removal percentage. Furthermore, only metformin removal improved to 80–100% when HRT or biomass concentration was increased. Microbial community changes were followed with 16S rRNA gene amplicon sequencing in response to the increment of pharmaceutical concentration: Nitrospirae and Planctomycetes 16S rRNA relative gene abundance decreased, whereas Acidobacteria and Bacteroidetes increased. Remarkably, the Dokdonella genus, previously implicated in acetaminophen metabolism, showed a 30-fold increase in abundance at the highest concentration of pharmaceuticals applied. Taken together, these results suggest that the incomplete removal of most pharmaceutical compounds in WWTPs is dependent on neither concentration nor reaction time. Accordingly, we propose a chemical equilibrium or a growth substrate limitation as the responsible mechanisms of the incomplete removal. Finally, Dokdonella could be the main acetaminophen degrader under activated sludge conditions, and non-antibiotic pharmaceuticals might still be toxic to relevant WWTP bacteria.  相似文献   

20.
Quantitative fluorescence in situ hybridization (FISH) and the combination of FISH with microautoradiography (MAR) were used in order to study the long-term population dynamics (2.5 years) and the in situ physiology in two parallel activated sludge pilot systems with enhanced biological phosphorus removal (EBPR). The two systems received the same influent wastewater, but were differently operated (with and without nitrogen removal, respectively). Both systems showed a significant P removal that increased when different substrates (phosphorus (P), acetate and glucose, respectively) were added to the influent wastewater. Rhodocyclus-related bacteria were present in both systems in significant numbers (ranging from 4 to 28%) throughout the whole period. This supports the hypothesis that these bacteria occur in significant numbers in different types of well-operating EBPR activated sludge processes. However, we observed a lower correlation (< 0.5) for the amount of Rhodocyclus-related bacteria to the P content in activated sludge than previous studies (> 0.9). The Actinobacteria were the only additional group of bacteria which showed a similar degree of correlation to the P content in activated sludge as the Rhodocyclus-related bacteria--but only for the system without nitrogen removal. Significant amounts (< or = 12%) of glycogen-accumulating bacteria (GAOs) were detected in the system with nitrogen removal (but not in the other system), but had no, in contrast to previous observations, apparent negative effect on the overall EBPR performance. FISH-MAR indicated that a significant part of the Betaproteobacteria (part of them identified as Rhodocyclus-related bacteria) as well as the Actinobacteria were able to take up 33Pi, [3H]-acetate and [3H]-glucose under anaerobic-aerobic conditions. The contribution of anoxic 33Pi uptake under alternating anaerobic-anoxic conditions was significantly lower. Interestingly, not all Rhodocyclus-related bacteria showed uptake of these three radioactive substrates. This may be due to differences in metabolic state, physiological potential or genotype, not detectable by the present probe set for Rhodocyclus-related bacteria. Comparison of the 33Pi, [3H]-acetate and [3H]-glucose uptake by activated sludge after different fixation and incubation procedures showed that a part of the observed 33Pi uptake may have been caused by a combination of a biological and chemical or biologically induced chemical P adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号