首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chitosan induced stomatal closure in wild type-plants and NADPH oxidase knock-out mutants (atrbohD atrbohF), and reactive oxygen species (ROS) production in wild-type guard cells. Closure and production were completely abolished by catalase and a peroxidase inhibitor. These results indicate that chitosan induces ROS production mediated by peroxidase, resulting in stomatal closure.  相似文献   

2.
The antibiotic A23187 carries Ca2+ across Müller-Rudin membranes made from 1,2-dierucoyl-sn-glycero-3-phosphocholine and n-decane. The conductance of the membranes is not increased by the Ca2+-transport. The flux depends linearly on Ca2+ concentration and ionophore concentration (above pH 6). It increases with increasing pH, approximately by a factor of 4–5 between pH 6 and pH 8. Maximal Ca2+-fluxes of about 10?10mol · cm?2 · s?1 were found. A counter transport of H+ could not be detected.The complex formation between A23187 and Ca2+ in egg phosphatidylcholine vesicles was studied spectroscopically. The results are consistent with the formation of a 2 : 1 complex. Optical absorption measurements on single phosphatidylcholine membranes were used to calculate the concentration of membrane-bound ionophore A23187.  相似文献   

3.
Our previous report has shown that honokiol (HNK), a constituent of Magnolia officinalis, induces a novel form of non-apoptotic programmed cell death in human leukemia NB4 and K562 cells. In this study, we further explored the relationship between the cell death pathway and cytoplasmic vacuolization and studied the underlying mechanism of leukemia cell death mediated by honokiol. The results showed that low concentrations of honokiol activated an novel alternative cell death fitted the criteria of paraptosis, such as cytoplasmic vacuolization derived from endoplasmic reticulum swelling, lack of caspase activation, and lack of apoptotic morphology. Results further indicated that the cell death was time- and concentration-dependent. In addition, honokiol-induced paraptosis did not involve membrane blebbing, chromatin condensation and phosphatidylserine exposure at the outer of the plasma membrane. The mechanism of the cell death may be associated, at least in part, with the increased generation of reactive oxygen species. Further analysis showed that honokiol induces cell death predominantly via paraptosis and to a certain extent via apoptosis in NB4 cells, and predominantly via apoptosis and to a certain extent via paraptosis in K562 cells. These observations suggest that cell death occurs via more than one pathway in leukemia cells and targeting paraptosis may be an alternative and promising avenue for honokiol in leukemia therapy.  相似文献   

4.
A. Telfer  J. Barber 《BBA》1978,501(1):94-102
1. Ionophore A23187 induces uncoupling of potassium ferricyanide-dependent O2 evolution by envelope-free chloroplasts and oxaloacetate-dependent O2 evolution by intact chloroplasts. The half maximal concentration (C12) for stimulation of oxygen evolution in both cases is approximately 4 μM · 100 μg chlorophyll · ml?1.2. Ionophore A23187 also induces inhibition of CO2 and 3-phosphoglycerate-dependent O2 evolution by intact chloroplasts in the presence of 3 mM MgCl2. The half maximal concentrations (C12) for inhibition of O2 evolution are 3 μM and 5 μM respectively · 100 μg?1 chlorophyll · ml?1.3. A very high concentration of ionophore A23187 (10 μM · 20 μg?1 chlorophyll · ml?1) plus 0.1 mM EDTA lowers the fluorescence yield of intact chloroplasts suspended in a cation-free medium in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, indicating loss of divalent cation from the diffuse double layers of the thylakoid membranes.4. These results are discussed in relation to ionophore A23187-induced divalent cation/proton exchange at both the thylakoid and the envelope membranes of intact chloroplasts.  相似文献   

5.
The antibiotic A23187 carries Ca2+ across Müller-Rudin membranes made from 1,2-dierucoyl-sn-glycero-3-phosphocholine and n-decane. The conductance of the membranes is not increased by the Ca2+-transport. The flux depends linearly on Ca2+ concentration and ionophore concentration (above pH 6). It increases with increasing pH, approximately by a factor of 4-5 between pH 6 and pH 8. Maximal Ca2+-fluxes of about 10(-10) mol-cm-2-s-1 were found. A counter transport of H+ could not be detected. The complex formation between A23187 and Ca2+ in egg phosphotidylcholine vesicles was studied spectroscopically. The results are consistent with the formation of a 2:1 complex. Optical absorption measurements on single phophatidylcholine membranes were used to calculate the concentration of membrane-bound ionophore A23187.  相似文献   

6.
Serum deprivation-triggered increases in reactive oxygen species (ROS) are known to induce apoptotic cell death. However, the mechanism by which serum deprivation causes ROS production is not known. Since mitochondria are the main source of ROS and since mitochondrial ROS modulator 1 (Romo1) is involved in ROS production, we sought to determine if serum deprivation triggered ROS production through Romo1. To examine the relationship between Romo1 and the serum deprivation-triggered increase in ROS, we transfected Romo1 siRNA into various cell lines and looked for inhibition of mitochondrial ROS generation. Romo1 knockdown by Romo1 siRNA blocked the mitochondrial ROS production caused by serum deprivation, which originates in the mitochondrial electron transport chain. We also found that Romo1 knockdown inhibited serum deprivation-induced apoptosis. These findings suggest that Romo1-derived ROS play an important role in apoptotic cell death triggered by withdrawal of cell survival factors.  相似文献   

7.
8.
Sunohara Y  Matsumoto H 《Phytochemistry》2008,69(12):2312-2319
The importance of reactive oxygen species for herbicide quinclorac (3,7-dichloro-8-quinolinecarboxylic acid)-induced cell death in roots was investigated. This was in order to understand its mode of action in grass species grown in the dark. Under these dark conditions, quinclorac suppressed the shoot and root growth of maize (Zea mays L. cv. Honey Bantam) in a concentration-dependent manner (50muM), although the inhibition level was less than that observed under growth conditions in the light. Analysis of cell viability using Evans blue or fluorescein diacetate-propidium iodide (FDA-PI) staining showed that the maize root cells significantly lost their viability after 14h root treatment with 10muM quinclorac, but not 10muM 2,4-dichlorophenoxyacetic acid (2,4-D). Determination of reactive oxygen species (ROS) in maize roots using a superoxide anion (O(2)(-))-specific indicator, dihydroethidium (DHE), indicated that 50muM quinclorac induced a high level of O(2)(-) production in maize roots after 14h root treatment than that of either the control (non-treated) or with 50muM 2,4-D. Moreover, either cell death or ethane evolution, an indicator of lipid peroxide formation, in maize root segments was significantly enhanced by 50muM quinclorac, but not by 50muM 2,4-D. On the other hand, the 50muM 2,4-D treatment induced much higher ethylene and cyanide production in the root segments than with the 50muM quinclorac. These results suggest that quinclorac-induced cell death in maize roots may be caused by ROS and lipid peroxidation, but not by ethylene and its biosynthetic pathway-related substances including cyanide, which have been thought to be the causative factor of quinclorac-induced phytotoxicity in susceptible grass weeds such as Echinochloa, Digitaria, and Setaria.  相似文献   

9.
Many human diseases are associated with harmful action of reactive oxygen species (ROS). These species are involved in the degradation of essential tissue or related components. One of such components is synovial fluid that contains a high-molecular-weight polymer--hyaluronan (HA). Uninhibited and/or inhibited hyaluronan degradation by the action of various ROS has been studied in many in vitro models. In these studies, the change of the molecular weight of HA or a related parameter, such as HA solution viscosity, has been used as a marker of inflicted damage. The aim of the presented review is to briefly summarize the available data. Their correct interpretation could contribute to the implementation of modern methods of evaluation of the antioxidative capacity of natural and synthetic substances and prospective drugs--potential inflammatory disease modifying agents. Another focus of this review is to evaluate briefly the impact of different available analytical techniques currently used to investigate the structure of native high-molecular-weight hyaluronan and/or of its fragments.  相似文献   

10.
11.
Numerous biochemical studies are aimed at elucidating the sources and mechanisms of formation of reactive oxygen species (ROS) because they are involved in cellular, organ-, and tissue-specific physiology. Mitochondria along with other cellular organelles of eukaryotes contribute significantly to ROS formation and utilization. This review is a critical account of the mitochondrial ROS production and methods for their registration. The physiological and pathophysiological significance of the mitochondrially produced ROS are discussed.  相似文献   

12.
MuRF1 is a previously reported ubiquitin-ligase found in striated muscle that targets troponin I and myosin heavy chain for degradation. While MuRF1 has been reported to interact with mitochondrial substrates in yeast two-hybrid studies, no studies have identified MuRF1’s role in regulating mitochondrial function to date. In the present study, we measured cardiac mitochondrial function from isolated permeabilized muscle fibers in previously phenotyped MuRF1 transgenic and MuRF1?/? mouse models to determine the role of MuRF1 in intermediate energy metabolism and ROS production. We identified a significant decrease in reactive oxygen species production in cardiac muscle fibers from MuRF1 transgenic mice with increased α-MHC driven MuRF1 expression. Increased MuRF1 expression in ex vivo and in vitro experiments revealed no alterations in the respiratory chain complex I and II function. Working perfusion experiments on MuRF1 transgenic hearts demonstrated significant changes in glucose oxidation. This is an factual error as written; however, total oxygen consumption was decreased. This data provides evidence for MuRF1 as a novel regulator of cardiac ROS, offering another mechanism by which increased MuRF1 expression may be cardioprotective in ischemia reperfusion injury, in addition to its inhibition of apoptosis via proteasome-mediate degradation of c-Jun. The lack of mitochondrial function phenotype identified in MuRF1?/? hearts may be due to the overlapping interactions of MuRF1 and MuRF2 with energy regulating proteins found by yeast two-hybrid studies reported here, implying a duplicity in MuRF1 and MuRF2’s regulation of mitochondrial function.  相似文献   

13.
The production of reactive oxygen species by dietary flavonols   总被引:1,自引:0,他引:1  
Flavonols are a group of naturally occurring compounds which are widely distributed in nature where they are found glycosylated primarily in vegetables and fruits. A number of studies have found both anti- and prooxidant effects for many of these compounds. The most widely studied because of their ubiquitous nature have been quercetin, a B-dihydroxylated and myricetin, a B-trihydroxylated flavonol. Some of their prooxidant properties have been attributed to the fact that they can undergo autooxidation when dissolved in aqueous buffer. Studying a number of factors affecting autooxidation, we found the rate of autooxidation for both quercetin and myricetin to be highly pH dependent with no autooxidation detected for quercetin at physiologic pH. Both the addition of iron for the two flavonols and the addition of iron followed by SOD for quercetin at physiologic pH. Both the addistantially. Neither kaempferol, a monohydroxylated flavonol nor rutin, a glycosylated quercetin showed any ability to autooxidize. The results with rutin differ from what we expected based on the B-ring structural similarity to quercetin. The autooxidation of quercetin and myricetin was further studied by electron spin resonance spectroscopy (ESR). Whereas quercetin produced a characteristic DMPO-OH radical, it was not detected below a pH of 9. However, the addition of iron allowed the signal to be detected at a pH as low as 8.0. On the other hand, myricetin autooxidation yielded a semiquinone signal which upon the addition of iron, converted to a DMPO-OH signal detected at a pH of 7.5. In a microsome-NADPH system, quercetin produced an increase in oxygen utilization and with ESR, an ethanol-derived radical signal which could be completely suppressed by catalase indicating the dependence of the signal on hydrogen peroxide. These studies demonstrate that the extracellular production of active oxygen species by dietary flavonols is not likely to occur in vivo but the potential for intracellular redox cycling may have toxicologic significance.  相似文献   

14.
Binding of ouabain to Na+/K+-ATPase activated multiple signal transduction pathways including stimulation of Src, Ras, p42/44 MAPKs and production of reactive oxygen species (ROS) in rat cardiac myocytes. Inhibition of either Src or Ras ablated ouabain-induced increase in both [Ca2+]i and contractility. While PD98059 abolished the effects of ouabain on [Ca2+]i, it only caused a partial inhibition of ouabain-induced increases in contractility. On the other hand, pre-incubation of myocytes with N-acetyl cysteine (NAC) reduced the effects of ouabain on contractility, but not [Ca2+]i. Furthermore, 5-hydroxydecanoate (5-HD) blocked ouabain-induced ROS production and partially inhibited ouabain-induced increases in contractility in cardiac myocytes. Pre-incubation of myocytes with both 5-HD and PD98059 completely blocked ouabain's effect on contractility. Finally, we found that opening of mitochondrial KATP channel by diazoxide increased intracellular ROS and significantly raised contractility in cardiac myocytes. These new findings indicate that ouabain regulates cardiac contractility via both [Ca2+]i and ROS. While activation of MAPKs leads to increases in [Ca2+]i, opening of mitochondrial KATP channel relays the ouabain signal to increased ROS production in cardiac myocytes.  相似文献   

15.
16.
17.
Overexpression of c-Myc represents the most frequently deregulated genetic event in cancer, and therefore c-Myc may represent a good molecular target for cancer therapy. The human lung carcinoma cell line, NCI-H1299, shows resistance to conventional cancer treatments, such as ionizing radiation (IR) and cisplatin, while the lung carcinoma cell line, NCI-H460, is sensitive to treatment with these agents. However, when treated with a chalcone compound [toluenesulfonylamido-chalcone, 4′-(p-toluene sulfonyl amino)-3,4-dihydroxy chalcone (TSHDC)], cell death was dramatically induced in NCI-H1299 cells as compared to NCI-H460 cells. TSHDC-mediated cytotoxicity was not dependent on the status of p53 and p21. However, TSHDC exerted increased c-Myc-dependent reactive oxygen species (ROS) production in NCI-H1299 cells in which c-Myc is overexpressed, while increased ROS production did not occur in A549 or NCI-H460 cells with a low c-Myc level. Several colon and brain cancer cells also showed a correlation between c-Myc expression and TSHDC-mediated increased cell death. Tumor regression by TSHDC was more dramatic in NCI-H1299 cells than NCI-H460 cells, when these cells were grafted to nude mice. However, in the case of IR and cisplatin, NCI-H460 cells were more sensitive than NCI-H1299 cells. From these results, c-Myc-mediated ROS production may be a good target for screening of novel cancer drugs and TSHDC might be a good candidate as a cancer drug, specifically in cancer cells that overexpress c-Myc.  相似文献   

18.
Two species of platelet-activating factor (PAF), 1-hexadecyl- and 1-octadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16 = 0 AGEPC and C18 = 0 AGEPC) were detected in ionophore A23187-stimulated human neutrophils. The amount of AGEPC in 1 x 10(7) neutrophil cells was 80 +/- 26 pmol (mean +/- standard error) with a range of 14 to 223 pmol (n = 8), and it consisted of 80% of the C16 = 0 species and 20% of the C18 = 0 species. Most of the AGEPC derived from ionophore-treated neutrophils remained cell associated rather than being secreted into the medium, even when the medium contained ample albumin protein, which can trap AGEPC. These results were obtained by a technique of gas chromatography-mass spectrometry coupled with selected ion monitoring.  相似文献   

19.
Reactive oxygen species (ROS) and/or Ca2+ overload can trigger depolarization of mitochondrial inner membrane potential (DeltaPsim) and cell injury. Little is known about how loss of DeltaPsim in a small number of mitochondria might influence the overall function of the cell. Here we employ the narrow focal excitation volume of the two-photon microscope to examine the effect of local mitochondrial depolarization in guinea pig ventricular myocytes. Remarkably, a single local laser flash triggered synchronized and self-sustained oscillations in DeltaPsim, NADH, and ROS after a delay of approximately 40s, in more than 70% of the mitochondrial population. Oscillations were initiated only after a specific threshold level of mitochondrially produced ROS was exceeded, and did not involve the classical permeability transition pore or intracellular Ca2+ overload. The synchronized transitions were abolished by several respiratory inhibitors or a superoxide dismutase mimetic. Anion channel inhibitors potentiated matrix ROS accumulation in the flashed region, but blocked propagation to the rest of the myocyte, suggesting that an inner membrane, superoxide-permeable, anion channel opens in response to free radicals. The transitions in mitochondrial energetics were tightly coupled to activation of sarcolemmal KATP currents, causing oscillations in action potential duration, and thus might contribute to catastrophic arrhythmias during ischemia-reperfusion injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号