首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our screening program for microorganisms that are able to metabolize eugenol, the main component of the essential oil of the clove tree Syzigium aromaticum (sy. Eugenia cariophyllus), we found a new Pseudomonas sp. that produces several substituted methoxyphenols when eugenol is fed to the culture. A taxonomic characterization of this new organism has been performed. Examples of the biotransformation products, produced in high amounts, were vanillic acid with 3.25 g/l within 99 h, ferulic acid with 5.8 g/l within 75 h and coniferyl alcohol with 3.22 g/l within 47.5 h. By changing the culture conditions the ratio of the different metabolites could be varied. Based on these results a scheme for the degradation of eugenol by this strain has been established. Received: 1 April 1996 / Received revision: 24 June 1996 / Accepted: 1 July 1996  相似文献   

2.
3.
Azospirillum brasilense possesses an alternative pathway of l-arabinose metabolism, which is different from the known bacterial and fungal pathways. In a previous paper (Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 2612-2623), we identified and characterized l-arabinose 1-dehydrogenase, which catalyzes the first reaction step in this pathway, and we cloned the corresponding gene. Here we focused on the fifth enzyme, alpha-ketoglutaric semialdehyde (alphaKGSA) dehydrogenase, catalyzing the conversion of alphaKGSA to alpha-ketoglutarate. alphaKGSA dehydrogenase was purified tentatively as a NAD(+)-preferring aldehyde dehydrogenase (ALDH) with high activity for glutaraldehyde. The gene encoding this enzyme was cloned and shown to be located on the genome of A. brasilense separately from a gene cluster containing the l-arabinose 1-dehydrogenase gene, in contrast with Burkholderia thailandensis in which both genes are located in the same gene cluster. Higher catalytic efficiency of ALDH was found with alphaKGSA and succinic semialdehyde among the tested aldehyde substrates. In zymogram staining analysis with the cell-free extract, a single active band was found at the same position as the purified enzyme. Furthermore, a disruptant of the gene did not grow on l-arabinose. These results indicated that this ALDH gene was the only gene of the NAD(+)-preferring alphaKGSA dehydrogenase in A. brasilense. In the phylogenetic tree of the ALDH family, alphaKGSA dehydrogenase from A. brasilense falls into the succinic semialdehyde dehydrogenase (SSALDH) subfamily. Several putative alphaKGSA dehydrogenases from other bacteria belong to a different ALDH subfamily from SSALDH, suggesting strongly that their substrate specificities for alphaKGSA are acquired independently during the evolutionary stage. This is the first evidence of unique "convergent evolution" in the ALDH family.  相似文献   

4.
5.
微生态学与中医学的观点是极为相似的,中药有效成分口服后,被肠道微生物进行生物转化,药效会得到减弱或者增强。对肠道微生物转化中药有效成分与肠道微生态平衡关系的研究,将是解释中药作用机制不可忽略的一条途径。  相似文献   

6.
Automated RNA alignment algorithms often fail to recapture the essential conserved sites that are critical for function. To assist in the refinement of these algorithms, we manually curated a set of 148 alignments with a total of 9600 unique sequences, in which each alignment was backed by at least one crystal or NMR structure. These alignments included both naturally and artificially selected molecules. We used principles of isostericity to improve the alignments from an average of 83%-94% isosteric base pairs. We expect that this alignment collection will assist in a wide range of benchmarking efforts and provide new insight into evolutionary principles governing change in RNA structural motifs. The improved alignments have been contributed to the Rfam database.  相似文献   

7.
Nadal M 《Biochimie》2007,89(4):447-455
Reverse gyrase was discovered more than twenty years ago. Recent biochemical and structural results have greatly enhanced our understanding of their positive supercoiling mechanism. In addition to new biochemical properties, a fine tuning of reverse gyrase regulation in response to DNA damaging agents has been recently described. These data give us a new insight in the cellular role of reverse gyrase. Moreover, it has been proposed that reverse gyrase has been implicated in genome stability.  相似文献   

8.
The biotransformation of d-carnitine and crotonobetaine into l-carnitine with wild and transformed E. coli strains under batch and continuous operation was optimised. In batch, the best conditions for the transformed strain were 30% oxygen saturation, a temperature of 41 °C and a minimal medium, whereas anaerobic cultures in either complex or minimal media at 37 °C and pH 7.5 were optimal for the wild strain. Studies on the expression of the enzymes involved in trimethylammonium metabolism showed that l-carnitine dehydratase activity was always higher than that of d-carnitine racemase. Experiments with the transformed strain in continuous cell-recycle reactors showed that, despite the higher productivity that could be achieved (0.65–1.2 g/L h), plasmid-bearing cells were segregated even when a selective medium was used. This fact was also confirmed by studying the evolution of the d-carnitine racemase level. Immobilization of the transformed strain in κ-carrageenan gels allowed continuous operation for l-carnitine production with no plasmid loss. In continuous processes with cell-retention systems, the wild strain showed higher productivity and stability than the transformed strain. Moreover, crotonobetaine was a better substrate for both strains used. Recycling with hollow-fiber cartridges provided the highest biomass level even though the l-carnitine dehydratase/biomass ratio was lower. However, membrane composition and cut-off had less influence on reactor performance as similar levels of productivity were attained. In spite of this, continuous processes attained a l-carnitine production as high as 11.5 g/L h as a result of the high enzyme induction and biomass levels.  相似文献   

9.
Pancreatic cancer is a highly lethal disease, being one of the five leading death causes among oncologic patients. It is usually diagnosed late due to the paucity of clinical signs, and the current therapy means have limited success. One of the documented risk factors for developing pancreatic adenocarcinoma is chronic pancreatitis. It is postulated that a chronic inflammatory disease has a potential of evolving toward neoplasia, a fact that could account for a percentage of the pancreatic cancers. Starting from this assumption, we intended to analyze the serum reflection of some molecules with proinflammatory roles, and compare them in healthy individuals, in patients with chronic pancreatitis and with pancreatic adenocarcinoma. Additionally, we performed a biochemical and hematological assessment of the study groups, and compared the results with the immunological parameters analyzed in the same subjects. We found significantly higher levels of Tumor Necrosis Factor-alpha and Interleukin 6 in chronic pancreatitis and pancreatic adenocarcinoma sera (with higher levels in the pancreatitis group than in the cancer group), compared to healthy controls. Additionally, we found significantly higher levels of interleukin 8 and Macrophage Inflammatory Protein-3 alpha in pancreatic cancer, compared to chronic pancreatitis and controls. We also identified numerous correlations between the abovementioned cytokines/chemokines and biochemical parameters, not very much studied before. Our results plead for a pathogenic role of chronic inflammation in pancreatic carcinogenesis, thus offering a potential tool for earliy diagnose or targets for therapy.  相似文献   

10.
siRNA and miRNA: an insight into RISCs   总被引:29,自引:0,他引:29  
  相似文献   

11.
Nitroaromatic compounds are used extensively in many industrial processes and have been released into the environment where they are considered environmental pollutants. Nitroaromatic compounds, in general, are resistant to oxidative attack due to the electron-withdrawing nature of the nitro groups and the stability of the benzene ring. However, the bacterium Comamonas sp. strain JS765 can grow with nitrobenzene as a sole source of carbon, nitrogen and energy. Biodegradation is initiated by the nitrobenzene dioxygenase (NBDO) system. We have determined the structure of NBDO, which has a hetero-hexameric structure similar to that of several other Rieske non-heme iron dioxygenases. The catalytic subunit contains a Rieske iron-sulfur center and an active-site mononuclear iron atom. The structures of complexes with substrates nitrobenzene and 3-nitrotoluene reveal the structural basis for its activity with nitroarenes. The substrate pocket contains an asparagine residue that forms a hydrogen bond to the nitro-group of the substrate, and orients the substrate in relation to the active-site mononuclear iron atom, positioning the molecule for oxidation at the nitro-substituted carbon.  相似文献   

12.
Sabin strains used in the manufacture of oral polio vaccine (OPV) replicate in the human organism and can give rise to vaccine-derived polioviruses. The increased neurovirulence of vaccine derivatives has been known since the beginning of OPV use, but their ability to establish circulation in communities has been recognized only recently during the latest stages of the polio eradication campaign. This important observation called for studies of their emergence and evolution as well as extensive surveillance to determine the scope of this phenomenon. Here, we present the results of a study of vaccine-derived isolates from an immunocompromised poliomyelitis patient, the contacts, and the local sewage. All isolates were identified as closely related and slightly evolved vaccine derivatives with a recombinant type 2/type 1 genome. The strains also shared several amino acid substitutions including a mutation in the VP1 protein that was previously shown to be associated with the loss of attenuation. Another mutation in the VP3 protein resulted in altered immunological properties of the isolates, possibly facilitating virus spread in immunized populations. The patterns and rates of the accumulation of synonymous mutations in isolates collected from the patient over the extended period of excretion suggest either a substantially nonuniform rate of mutagenesis throughout the genome, or, more likely, the strains may have been intratypic recombinants between coevolving derivatives with different degrees of divergence from the vaccine parent. This study provides insight into the early stages of the establishment of circulation by runaway vaccine strains.  相似文献   

13.
Fungal biotransformation of p-coumaric acid into caffeic acid, potentially a strong antioxidant, was evidenced in Pycnoporus cinnabarinus cultures grown with high feeding of p-coumaric acid. Preliminary experiments showed no toxicity of both p-coumaric and caffeic acids at concentrations ranging from 0 to 500 mg l–1. Feeding 450 mg p-coumaric acid l–1 into P. cinnabarinus cultures grown on 20 g l–1 glucose medium resulted in the production of 257 mg caffeic acid l–1with a molar yield of 21%.  相似文献   

14.
15.
Many environmentally important photo- and chemolithoautotrophic bacteria accumulate globules of polymeric, water-insoluble sulfur as a transient product during oxidation of reduced sulfur compounds. Oxidation of this sulfur requires the concerted action of Dsr proteins. However, individual functions and interplay of these proteins are largely unclear. We proved with a ΔdsrE mutant experiment that the cytoplasmic α2β2γ2-structured protein DsrEFH is absolutely essential for the oxidation of sulfur stored in the intracellular sulfur globules of the purple sulfur bacterial model organism Allochromatium vinosum. The ability to degrade stored sulfur was fully regained upon complementation with dsrEFH in trans. The crystal structure of DsrEFH was determined at 2.5 Å resolution to assist functional assignment in detail. In conjunction with phylogenetic analyses, two different types of putative active sites were identified in DsrE and DsrH and shown to be characteristic for sulfur-oxidizing bacteria. Conserved Cys78 of A. vinosum DsrE corresponds to the active cysteines of Escherichia coli YchN and TusD. TusBCD and the protein TusE are parts of sulfur relay system involved in thiouridine biosynthesis. DsrEFH interacts with DsrC, a TusE homologue encoded in the same operon. The conserved penultimate cysteine residue in the carboxy-terminus of DsrC is essential for the interaction. Here, we show that Cys78 of DsrE is strictly required for interaction with DsrC while Cys20 in the putative active site of DsrH is dispensable for that reaction. In summary, our findings point at the occurrence of sulfur transfer reactions during sulfur oxidation via the Dsr proteins.  相似文献   

16.
17.
Dimethylsulfoniopropionate (DMSP) plays important roles in oceanic carbon and sulfur cycling and may significantly impact climate. It is a biomolecule synthesized from the methionine (Met) pathway and proposed to serve various physiological functions to aid in environmental stress adaptation through its compatible solute, cryoprotectant, and antioxidant properties. Yet, the enzymes and mechanisms regulating DMSP production are poorly understood. This study utilized a proteomics approach to investigate protein changes associated with salinity-induced DMSP increases in the model sea-ice diatom Fragilariopsis cylindrus (CCMP 1102). We hypothesized proteins associated with the Met-DMSP biosynthesis pathway would increase in relative abundance when challenged with elevated salinity. To test this hypothesis axenic log-phase cultures initially grown at a salinity of 35 were gradually shifted to a final salinity of 70 over a 24-h period. Intracellular DMSP was measured and two-dimensional gel electrophoresis was used to identify protein changes at 48 h after the shift. Intracellular DMSP increased by approximately 85% in the hypersaline cultures. One-third of the proteins increased under high salinity were associated with amino acid pathways. Three protein isoforms of S-adenosylhomo-cysteine hydrolase, which synthesizes a Met precursor, increased 1.8- to 2.1-fold, two isoforms of S-adenosyl Met synthetase increased 1.9- to 2.5-fold, and S-adenosyl Met methyltransferase increased by 2.8-fold, suggesting active methyl cycle proteins are recruited in the synthesis of DMSP. Proteins from the four enzyme classes of the proposed algal Met transaminase DMSP pathway were among the elevated proteins, supporting our hypothesis and providing candidate genes for future characterization studies.  相似文献   

18.
A combined use of electrospray ionization-mass spectrometry (ESI-MS), 51V NMR spectroscopy and ab initio calculations has been proved to be a powerful tool for obtaining direct information of the structure and the chemistry of peroxo vanadates in solutions. The analysis of acid solutions containing monoperoxo vanadates showed the occurrence of exchange reactions between solvent molecules in the coordination sphere of the metal. On the other hand, bisperoxo vanadates appear to be less prone to coordinate more than one water or alcohol molecule. The bisperoxo complex [VO5]- in the presence of histidine and histidine-like ligands, at near neutral conditions, has been studied. Coordination of one and two molecules of ligand is observed affording [VO5L]- and [VO5L2]-, respectively. Characterization of these species has been obtained by MSn experiments, which allowed us to distinguish specific fragmentations of the peroxidic moiety.  相似文献   

19.
Properdin (FP) is an essential positive regulator of the complement alternative pathway (AP) providing stabilization of the C3 and C5 convertases, but its oligomeric nature challenges structural analysis. We describe here a novel FP deficiency (E244K) caused by a single point mutation which results in a very low level of AP activity. Recombinant FP E244K is monomeric, fails to support bacteriolysis, and binds weakly to C3 products. We compare this to a monomeric unit excised from oligomeric FP, which is also dysfunctional in bacteriolysis but binds the AP proconvertase, C3 convertase, C3 products and partially stabilizes the convertase. The crystal structure of such a FP-convertase complex suggests that the major contact between FP and the AP convertase is mediated by a single FP thrombospondin repeat and a small region in C3b. Small angle X-ray scattering indicates that FP E244K is trapped in a compact conformation preventing its oligomerization. Our studies demonstrate an essential role of FP oligomerization in vivo while our monomers enable detailed structural insight paving the way for novel modulators of complement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号