首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollen tube growth is a polarized growth process whereby the tip-growing tubes elongate within the female reproductive tissues to deliver sperm cells to the ovules for fertilization. Efficient and regulated membrane trafficking activity incorporates membrane and deposits cell wall molecules at the tube apex and is believed to underlie rapid and focused growth at the pollen tube tip. Rab GTPases, key regulators of membrane trafficking, are candidates for important roles in regulating pollen tube growth. We show that a green fluorescent protein-tagged Nicotiana tabacum pollen-expressed Rab11b is localized predominantly to an inverted cone-shaped region in the pollen tube tip that is almost exclusively occupied by transport vesicles. Altering Rab11 activity by expressing either a constitutive active or a dominant negative variant of Rab11b in pollen resulted in reduced tube growth rate, meandering pollen tubes, and reduced male fertility. These mutant GTPases also inhibited targeting of exocytic and recycled vesicles to the pollen tube inverted cone region and compromised the delivery of secretory and cell wall proteins to the extracellular matrix. Properly regulated Rab11 GTPase activity is therefore essential for tip-focused membrane trafficking and growth at the pollen tube apex and is pivotal to reproductive success.  相似文献   

2.
Embryonic blood vessels form in a reproducible pattern that interfaces with other embryonic structures and tissues, but the sources and identities of signals that pattern vessels are not well characterized. We hypothesized that the neural tube provides vascular patterning signal(s) that direct formation of the perineural vascular plexus (PNVP) that encompasses the neural tube at mid-gestation. Both surgically placed ectopic neural tubes and ectopic neural tubes engineered genetically were able to recruit a vascular plexus, showing that the neural tube is the source of a vascular patterning signal. In mouse-quail chimeras with the graft separated from the neural tube by a buffer of host cells, graft-derived vascular cells contributed to the PNVP, indicating that the neural tube signal(s) can act at a distance. Murine neural tube vascular endothelial growth factor A (VEGFA) expression was temporally and spatially correlated with PNVP formation, suggesting it is a component of the neural tube signal. A collagen explant model was developed in which presomitic mesoderm explants formed a vascular plexus in the presence of added VEGFA. Co-cultures between presomitic mesoderm and neural tube also supported vascular plexus formation, indicating that the neural tube could replace the requirement for VEGFA. Moreover, a combination of pharmacological and genetic perturbations showed that VEGFA signaling through FLK1 is a required component of the neural tube vascular patterning signal. Thus, the neural tube is the first structure identified as a midline signaling center for embryonic vascular pattern formation in higher vertebrates, and VEGFA is a necessary component of the neural tube vascular patterning signal. These data suggest a model whereby embryonic structures with little or no capacity for angioblast generation act as a nexus for vessel patterning.  相似文献   

3.
《Plant science》2005,169(6):1066-1073
Heterotrimeric G proteins are involved in a variety of cellular responses, but relatively little is known about their function and biochemistry in plant pollen. In this paper, we establish the presence of a G protein associated with the plasma membranes of Pinus bungeana pollen tube. A 40 kDa polypeptide is detected and immunolocalized predominantly in pollen tube plasma membranes by polyclonal antisera directed against conserved peptides of mammalian Gα-subunit during pollen tube development. Cholera and pertussis toxins exhibited biphasic actions on tube growth, that is to say, inhibited pollen tube growth and result in rupture of tubes at concentrations less than 400 ng mL−1, whereas stimulated pollen tube growth at concentration over 500 ng mL−1. Fourier transform-infrared (FT-IR) spectra showed that the two toxins at concentrations of 400 ng mL−1 resulted in enhanced synthesis of phenolics and reduced synthesis of cellulose, hemicellulose, and xylan of pollen tube wall, which may account for incidental rupture of pollen tubes at the concentration. These results suggest that the two toxins possibly affect pollen tube growth via downstream pertussis or cholera toxin-sensitive functional proteins, which regulate tube wall biosynthesis than at the Gα-subunit in P. bungeana tube growth.  相似文献   

4.
N-Acetylmannosamine did not support the growth of Candida albicans, and this sugar was not accumulated by cells. Incubation of starved yeast cells at 37 degrees C with N-acetylmannosamine plus glucose resulted in germ tube formation. Furthermore, N-acetylmannosamine alone induced the uptake system for N-acetylglucosamine and the enzymes of the N-acetylglucosamine catabolic pathway to the same extent as the natural substrate. Induction of the uptake system and the enzymes was observed at 28 degrees C without germ tube formation and at 37 degrees C with germ tube formation. N-Acetylmannosamine is thus a gratuitous inducer for enzymes of the N-acetylglucosamine pathway and germ tube formation in C. albicans.  相似文献   

5.
Summary In vitro penetration of the micropyle of freshly isolatedGasteria verrucosa ovules by pollen tube was monitored on agar medium. 40–60% of the micropyles were penetrated, comparable with in vivo penetration percentages. When germinated on agar,Gasteria pollen tube elongation lasts for up to 8 h while plasma streaming continues for about 20–24 h. The generative cell divides between 7 and 20 h after germination, and after 20 h the pollen tube arrives at one of the synergids. The sperm cells arrive after 22 h. The whole process takes more time in vitro than in vivo. In fast growing pollen tubes, a pulsed telescope-like growth pattern of tube elongation is observed. The formation of pollen tube wall material precedes tube elongation and probably prevents regular enlargement of the pollen tube tip-zone. Rapid stretching of the new pollen tube wall material follows, probably due to gradually increased osmotic pressure and the use of lateral wall material below the tip. The stretching ceases when the supplies of plasma membrane and excretable wall material are exhausted. Multiple pollen tube penetration of the micropyle occurs in vitro as it does in vivo. Most pollen tube growth ceases within the micropyle but, if it continues, the pollen tubes curl. Inside the micropyle the pollen tube shows haustorial growth. At the ultrastructural level, the wall thickening of in vitro pollen tubes is quite similar to that in vivo. Before transfer of pollen tube cytoplasm a small tube penetrates one of the synergids. Sperm nuclei with condensed chromatin are observed in the pollen tube and the synergid. In vivo prometaphase nuclei are found in the most chalazal part of a synergid, against the egg cell nucleus and nucleus of the central cell at a later stage. Using media forLilium ovule culture,Gasteria ovules were kept alive for at least 6 weeks. Swelling of the ovule depends on pollen tube penetration. The conditions for fertilization to occur after in vitro ovular pollination seem to be present.  相似文献   

6.
Structure and dynamics of model pore insertion into a membrane   总被引:1,自引:0,他引:1  
A cylindrical transmembrane molecule is constructed by linking hydrophobic sites selected from a coarse grain model. The resulting hollow tube assembly serves as a representation of a transmembrane channel, pore, or a carbon nanotube. The interactions of a coarse grain di-myristoyl-phosphatidyl-choline hydrated bilayer with both a purely hydrophobic tube and a tube with hydrophilic caps are studied. The hydrophobic tube rotates in the membrane and becomes blocked by lipid tails after a few tens of nanoseconds. The hydrophilic sites of the capped tube stabilize it by anchoring the tube in the lipid headgroup/water interfacial region of each membrane leaflet. The capped tube remains free of lipid tails. The capped tube spontaneously conducts coarse grain water sites; the free-energy profile of this process is calculated using three different methods and is compared to the barrier for water permeation through the lipid bilayer. Spontaneous tube insertion into an undisturbed lipid bilayer is also studied, which we reported briefly in a previous publication. The hydrophobic tube submerges into the membrane core in a carpetlike manner. The capped tube laterally fuses with the closest leaflet, and then, after plunging into the membrane interior, rotates to assume a transbilayer orientation. Two lipids become trapped at the end of the tube as it penetrates the membrane. The hydrophilic headgroups of these lipids associate with the lower tube cap and assist the tube in crossing the interior of the membrane. When the rotation is complete these lipids detach from the tube caps and fuse with the lower leaflet lipids.  相似文献   

7.
The proper size of epithelial tubes is critical for the function of the lung, kidney, vascular system and other organs, but the genetic and cellular mechanisms that control epithelial tube size are unknown. We investigated tube size control in the embryonic and larval tracheal (respiratory) system of Drosophila. A morphometric analysis showed that primary tracheal branches have characteristic sizes that undergo programmed changes during development. Branches grow at different rates and their diameters and lengths are regulated independently: tube length increases gradually throughout development, whereas tube diameter increases abruptly at discrete times in development. Cellular analysis and manipulation of tracheal cell number using cell-cycle mutations demonstrated that tube size is not dictated by the specific number or shape of the tracheal cells that constitute it. Rather, tube size appears to be controlled by coordinately regulating the apical (lumenal) surface of tracheal cells. Genetic analysis showed that tube sizes are specified early by branch identity genes, and the subsequent enlargement of branches to their mature sizes and maintenance of the expanded tubes involves a new set of genes described here, which we call tube expansion genes. This work establishes a genetic system for investigating tube size regulation, and provides an outline of the genetic program and cellular events underlying tracheal tube size control.  相似文献   

8.
Fossilized tube feet are described on Codiacrinus schultzei Follmann from the Lower Devonian Hunsrück Slate of Germany. This is the first definitive proof of tube feet on any fossil crinoid. Three lightly pyritized, flattened tube feet are preserved in a single interray of this cladid crinoid. The tube feet were at least 7 mm long. Their preservation is very similar to the tube feet reported previously from a Hunsrück ophiuroid, except that the Codiacrinus tube feet have small papillae, similar to living crinoids.  相似文献   

9.
The polar filaments within microsporidian spores discharges as tubes with subsecond velocity. Populations of discharging tubes of Glugea hertwigi spores pulse-labeled with latex particles for 1-3 s were consistently devoid of label at the distal ends; discharging tubes were completely labeled after 30- to 60-s exposure to latex. This experiment indicates that discharge tubes grow at the tip. Completely assembled discharge tubes consisted of single, empty cylinders; however, incompletely discharged tubes had a cylinder-within-a-cylinder profile at the distal ends. This observation indicates that the discharge tube material emerges at the distal end by an eversion process. Finally, studies with cinematic Nomarski interference optics of spore tubes extruding across a water-air interphase indicate that all the material emerging from the growing tip of the tube is incorporated into the wall of the discharge tube. Evidence indicates that the polar filament of undischarged spores is a homogeneous coil of polar tube protein equivalent to the polar tube protein in discharged tubes.  相似文献   

10.
SDS-polyacrylamide gel electrophoresis was used to separate the secretory proteins produced by the epithelial and endometrial glands of the uterine tube and uterus in the snapping turtle Chelydra serpentina. The proteins were analyzed throughout the phases of the reproductive cycle from May to August, including preovulatory, ovulatory, postovulatory or luteal, and vitellogenic phases. The pattern of secretory proteins is quite uniform along the length of the uterine tube, and the same is true of the uterus, but the patterns for uterine tube and uterus are clearly different. We identify 13 major proteins in C. serpentina egg albumen. Bands co-migrating with 11 of these are found in the uterine tube, but at most 4 are found in the uterus, suggesting that the majority of the albumen proteins are most likely secreted in the uterine tube, not in the uterus. Although some of the egg albumen proteins are present in the uterine tube only at the time of ovulation, most of the bands corresponding to albumen proteins are present throughout the breeding season even though the snapping turtle is a monoclutch species. These results suggest that the glandular secretory phase in the uterine tube is active and quite homogeneous in function regardless of location or phase of the reproductive cycle.  相似文献   

11.
郭志平 《植物研究》2002,22(3):333-336
经三年连续试验,用试管保存含马铃薯X病毒(PVX)、马铃薯Y病毒(PVY)、烟草花叶病毒(TMV)的毒源烟草,结果证明毒源烟草可在试管中正常生长发育。负染法和免疫电镜捕获法检测结果证明,试管毒源烟草不同生育期,体内的病毒含量不同;试管毒源烟草在管外土壤中栽培可正常生长发育,并表现出相应的症状,接种指示植物试验证明其侵染力与温室内保存的毒源效果相同。  相似文献   

12.
Corolla tube formation inTrachelospermum asiaticum, Nerium indicum var.leucanthum, Anodendrom affine, Vinca major, Catharanthus roseus andAmsonia elliptica was investigated anatomically. The corolla tube formation among these species is basically similar. The bases of petal primordia extend laterally to the interprimordial regions, the upward growth occurrig at those regions just beside the petal bases. The extending petal bases connect with each other at the bases of the abaxial side of stamen primordia in the early stage of the corolla development. The upward growth at the coonnected regions results in the formation of a short corolla tube but is weakened rapidly. At the stage of the mutual connection of petal bases, a common base of petal and stamen primordia is initiated. This common base develops into the lower portion of the corolla tube, i.e. the portion below the stamen insertion. In a relatively late stage, adjacent margins, of the corolla lobes fuse postgenitally at their lower portions, resulting in the formation of almost all of the upper portion of the corolla tube. The corona inNerium andVinca is initiated by the active adaxial growth of the upper portion of the corolla tube.  相似文献   

13.
Summary Clostridum propionicum is a chemical autotroph that metabolizes alanine to propionic acid (reduction product) and acetic acid (oxidation product). The ratio of propionate/acetate predicted by the electron balance is 2:1. This study reports the effect of pH on growth and organic acid production by this organism when grown in both test tube cultures initially buffered from pH 7.0 to 5.0, and in fermentors maintained at pH 7.0 and 6.5. Highest growth and organic acid production was found at pH 7.0 in both cases. HPLC analysis showed that at pH 7.0, the ratios of propionate to acetate were 0.45:1 (stationary tube, 24 h). The highest ratio observed was 1.8:1 (stationary tube, pH 6.0, 24h). This tube produced 8.5% of the acids produced in the pH 7.0 culture tube. The identify of the major portion of the reduction products of the organism remains unknown.  相似文献   

14.
An important step in epithelial organ development is size maturation of the organ lumen to attain correct dimensions. Here we show that the regulated expression of Tenectin (Tnc) is critical to shape the Drosophila melanogaster hindgut tube. Tnc is a secreted protein that fills the embryonic hindgut lumen during tube diameter expansion. Inside the lumen, Tnc contributes to detectable O-Glycans and forms a dense striated matrix. Loss of tnc causes a narrow hindgut tube, while Tnc over-expression drives tube dilation in a dose-dependent manner. Cellular analyses show that luminal accumulation of Tnc causes an increase in inner and outer tube diameter, and cell flattening within the tube wall, similar to the effects of a hydrostatic pressure in other systems. When Tnc expression is induced only in cells at one side of the tube wall, Tnc fills the lumen and equally affects all cells at the lumen perimeter, arguing that Tnc acts non-cell-autonomously. Moreover, when Tnc expression is directed to a segment of a tube, its luminal accumulation is restricted to this segment and affects the surrounding cells to promote a corresponding local diameter expansion. These findings suggest that deposition of Tnc into the lumen might contribute to expansion of the lumen volume, and thereby to stretching of the tube wall. Consistent with such an idea, ectopic expression of Tnc in different developing epithelial tubes is sufficient to cause dilation, while epidermal Tnc expression has no effect on morphology. Together, the results show that epithelial tube diameter can be modelled by regulating the levels and pattern of expression of a single luminal glycoprotein.  相似文献   

15.
Human umbilical vein endothelial cells differentiate within 12 h to form capillary-like networks of tube structures when the cells are plated on Matrigel, a mixture of basement membrane proteins. Nothing is known about the intracellular signaling events involved in this differentiation. As a first step to define the process, we investigated the possible role of protein kinase C activation by beta-phorbol 12-myristate 13-acetate (PMA) in regulating the formation of the tube structures. In this model, PMA increased tube formation several-fold in a dose-dependent manner with half-maximum stimulation of tube formation at approximately 5 nM PMA. In the absence of serum, essentially little or no tubes were formed on Matrigel unless PMA was added to the medium. Only active phorbol analogs increased tube formation, while the protein kinase C inhibitor, H-7, blocked tube formation. The protein kinase C activators and inhibitors were effective only when added at or just after plating of the cells and did not affect already formed tubes. This study suggests that protein kinase C is involved in the early events of in vitro endothelial cell tube formation on Matrigel.  相似文献   

16.
Factors affecting germ tube formation in Candida albicans at suboptimal temperatures were investigated. Candida albicans formed germ tubes between 22 and 30 degrees C in solution when incubated without shaking, in the presence of bicarbonate (2 mg mL-1). Other conditions depended on the inducer used. Proline could induce germ tube formation optimally only when its concentration was between 200 and 400 mM. A concentration of 0.05 mM N-acetylglucosamine was sufficient to induce germ tube formation. N-Acetylglucosamine could induce germ tube formation at 30 but not at 25 degrees C. N-Acetylglucosamine induced germ tube formation was most reproducible when the cells were first starved by incubation in water for 16-24 h at 20 degrees C. Germ tubes induced by proline could be formed at pH values between 3.8 and 9.0 at 30 degrees C, but only between 7.0 and 7.5 at 25 degrees C. The addition of 0.05 to 5 mM glucose to a 5 mM proline induction solution allowed germ tube formation at 30 but not at 25 degrees C. Glucose (400 mM) did not suppress germ tube formation at 30 degrees C but only 5 mM was sufficient to cause a 65% suppression at 25 degrees C. The results show the importance of CO2 and (or) bicarbonate to the induction of germ tube formation and are consistent with the metabolism of the inducer.  相似文献   

17.
Many intracellular compartments of eukaryotic cells do not adopt a spherical shape, which would be expected in the absence of mechanisms organizing their structure. However, little is known about the principles determining the shape of organelles. We have observed very defined structural changes of vacuoles, the lysosome equivalents of yeast. The vacuolar membrane can form a large tubular invagination from which vesicles bud off into the lumen of the organelle. Formation of the tube is regulated via the Apg/Aut pathway. Its lumen is continuous with the cytosol, making this inverse budding reaction equivalent to microautophagocytosis. The tube is highly dynamic, often branched, and defined by a sharp kink of the vacuolar membrane at the site of invagination. The tube is formed by vacuoles in an autonomous fashion. It persists after vacuole isolation and, therefore, is independent of surrounding cytoskeleton. There is a striking lateral heterogeneity along the tube, with a high density of transmembrane particles at the base and a smooth zone devoid of transmembrane particles at the tip where budding occurs. We postulate a lateral sorting mechanism along the tube that mediates a depletion of large transmembrane proteins at the tip and results in the inverse budding of lipid-rich vesicles into the lumen of the organelle.  相似文献   

18.
The Drosophila heart tube represents a structure that similarly to vertebrates'' primary heart tube exhibits a large lumen; the mechanisms promoting heart tube morphology in both Drosophila and vertebrates are poorly understood. We identified Multiplexin (Mp), the Drosophila orthologue of mammalian Collagen-XV/XVIII, and the only structural heart-specific protein described so far in Drosophila, as necessary and sufficient for shaping the heart tube lumen, but not that of the aorta. Mp is expressed specifically at the stage of heart tube closure, in a polarized fashion, uniquely along the cardioblasts luminal membrane, and its absence results in an extremely small heart tube lumen. Importantly, Mp forms a protein complex with Slit, and interacts genetically with both slit and robo in the formation of the heart tube. Overexpression of Mp in cardioblasts promotes a large heart lumen in a Slit-dependent manner. Moreover, Mp alters Slit distribution, and promotes the formation of multiple Slit endocytic vesicles, similarly to the effect of overexpression of Robo in these cells. Our data are consistent with Mp-dependent enhancement of Slit/Robo activity and signaling, presumably by affecting Slit protein stabilization, specifically at the lumen side of the heart tube. This activity results with a Slit-dependent, local reduction of F-actin levels at the heart luminal membrane, necessary for forming the large heart tube lumen. Consequently, lack of Mp results in decreased diastolic capacity, leading to reduced heart contractility, as measured in live fly hearts. In summary, these findings show that the polarized localization of Mp controls the direction, timing, and presumably the extent of Slit/Robo activity and signaling at the luminal membrane of the heart cardioblasts. This regulation is essential for the morphogenetic changes that sculpt the heart tube in Drosophila, and possibly in forming the vertebrates primary heart tube.  相似文献   

19.
PurposeWe used pediatric and adult anthropomorphic phantoms to compare the radiation dose of low- and standard tube voltage chest and abdominal non-contrast-enhanced computed tomography (CT) scans. We also discuss the optimal low tube voltage for non-contrast-enhanced CT.MethodsUsing a female adult- and three differently-sized pediatric anthropomorphic phantoms we acquired chest and abdominal non-contrast-enhanced scans on a 320-multidetector CT volume scanner. The tube voltage was set at 80-, 100-, and 120 kVp. The tube current was automatically assigned on the CT scanner in response to the set image noise level. On each phantom and at each tube voltage we measured the surface and center dose using high-sensitivity metal-oxide-semiconductor field-effect transistor detectors.ResultsThe mean surface dose of chest and abdominal CT scans in 5-year olds was 4.4 and 5.3 mGy at 80 kVp, 4.5 and 5.4 mGy at 100 kV, and 4.0 and 5.0 mGy at 120 kVp, respectively. These values were similar in our 3-pediatric phantoms (p > 0.05). The mean surface dose in the adult phantom increased from 14.7 to 19.4 mGy for chest- and from 18.7 to 24.8 mGy for abdominal CT as the tube voltage decreased from 120 to 80 kVp (p < 0.01).ConclusionCompared to adults, the surface and center dose for pediatric patients is almost the same despite a decrease in the tube voltage and the low tube voltage technique can be used for non-contrast-enhanced chest- and abdominal scanning.  相似文献   

20.
A two-component laser Doppler anemometer was used to determine the velocity of aqueous flow in the region from 0.25 to 2.5 diameters downstream of a collapsible tube while the tube was executing vigorous repetitive flow-induced oscillations. The Reynolds number for the time-averaged flow was 10,750. A simultaneous measurement of the pressure at the downstream end of the tube was used to align all the results in time at sixty locations in each of the two principal planes defined by the axes of collapse of the flexible tube upstream. The raw data of seed-particle velocity were used to create a periodic waveform for each measured velocity component at each location by least-squares fitting of a Fourier series. The results are presented as both velocity vectors and interpolated contours, for each of ten salient instants during the cycle of oscillation. In the plane of the collapse major axis, the dominant feature is the jet which emerges from each of the two tube lobes when it collapses, but transient retrograde flow is observed on both the central and lateral edges of this jet. In the orthogonal, minor-axis plane, the dominant feature is the retrograde flow, which during part of the cycle extends over the whole plane. All these features are essentially confined to the first 1.5 diameters of the rigid pipe downstream of the flexible tube. These data map the temporal and spatial extent of the highly three-dimensional reversing flow just downstream of an oscillating collapsed tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号