首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The embryonic development of total specific activities as well as of molecular forms of acetylcholinesterase (AChE, EC 3.1.1.7) and of butyrylcholinesterase (BChE, EC 3.1.1.8) have been studied in the chick brain. A comparison of the development in different brain parts shows that cholinesterases first develop in diencephalon, then in tectum and telencephalon; cholinesterase development in retina is delayed by about 2-3 days; and the development in rhombencephalon [not studied until embryonic day 6 (E6)] and cerebellum is last. Both enzymes show complex and independent developmental patterns. During the early period (E3-E7) first BChE expresses high specific activities that decline rapidly, but in contrast AChE increases more or less constantly with a short temporal delay. Thereafter the developmental courses approach a late phase (E14-E20), during which AChE reaches very high specific activities and BChE follows at much lower but about parallel levels. By extraction of tissues from brain and retina in high salt plus 1% Triton X-100, we find that both cholinesterases are present in two major molecular forms, AChE sedimenting at 5.9S and 11.6S (corresponding to G2 and G4 globular forms) and BChE at 2.9S and 10.3S (G1 and G4, globular). During development there is a continuous increase of G4 over G2 AChE, the G4 form reaching 80% in brain but only 30% in retina. The proportion of G1 BChE in brain remains almost constant at 55%, but in retina there is a drastic shift from 65% G1 before E5 to 70% G4 form at E7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Presenilin (PS) 1 and PS2 are multi-pass transmembrane proteins involved in vital brain functions. Studies using transgenic or conditional knockout models show that PS1 is implicated in crucial brain developmental processes. Conversely, PS2 knockout mice do not exhibit any abnormality in the brain morphology, suggesting that PS2 may not be involved in brain development. However, there is no holistic information available for endogenous expression of PS during brain development. Therefore, we have examined the distribution and expression profile of PS1 and PS2 mRNA and protein in the cerebral cortex of prenatal, neonatal and postnatal mice. The results revealed that the distribution and expression profile of PS1 and PS2 mRNA varied significantly in the cerebral cortex during development. In prenatal stages, both PS1 and PS2 mRNA showed high expression at embryonic day (E) 12.5 and downregulation at E18.5. Postnatally, PS1 mRNA showed upregulation from postnatal day 0 (P0) to P45 and thereafter reduction at 20weeks, but PS2 mRNA showed no significant alteration. However, they did not exhibit any significant regional variation except at E18.5, when PS2 showed reduction in temporal and medial temporal lobes as compared to frontal and parietal lobes. Furthermore, PS1 showed significant change in protein expression similar to its mRNA profile. However, PS2 protein expression did not correspond to its mRNA; it was highest at E12.5, downregulated up to P20 and then upregulated at P45 and 20weeks. Taken together, our study demonstrates for the first time that the distribution and expression profile of PS2 is different from PS1 in the mouse cerebral cortex during development.  相似文献   

4.
5.
6.
The functions of P2X purinoceptors (P2X1-7) in the nervous system of adults have been widely studied. However, little is known about their roles during embryonic development. Our previous work has reported an extensive expression of P2X5 receptors in the adult mouse central nervous system. In the present study, we have examined the expression pattern of P2X5 receptor mRNA and protein during prenatal development of the mouse nervous system (from embryonic day E8 to E17). P2X5 receptors appeared in the neural tube as early as E8 and were gradually confined to new-born neurons in the cortical plate and ventral horn of the spinal cord. Heavy signals for P2X5 receptors were also found in dorsal root ganglia (DRG), retina, olfactory epithelium, and nerve fibers in skeletal muscles. In conclusion, P2X5 receptors were strongly represented in the developing mouse nervous system. The transient high expression pattern of P2X5 receptors in epithelium-like structures suggests a role during early neurogenesis.  相似文献   

7.
8.
With the aim of determining the distribution of the incorporation of 3H-uridine in both retina and retinal pigment epithelium (RPE), the mouse eyes at embryonic day 9.5 (E 9.5), E 12.5, E 14.5, E 16.5, E 18.5 of gestational ages, and postnatal day 1 (P 1), P 3, P 7, P 14 were analyzed by light microscopic radioautography. Small pieces of the ocular tissues were labelled with 3H-uridine in vitro and light microscopic radioautographs were prepared. The average grain numbers per cell of the respective regions of tissues were calculated. In the retina, the grain numbers increased gradually from E 9.5 to P 1 and reached the maximal value at P 1, and then decreased until P 14. However, the grain numbers were more in the vitreal portion than those in the scleral portion at E 16.5 and then became more in the scleral portion from E 18.5 to P 14. It is considered that the ganglion and bipolar cells finish the RNA synthesis earlier, while the photoreceptor cells do it later during the fetal and postnatal development. In the RPE, the grain numbers gradually increased from E 12.5 to P 7 and then decreased until P 14. Considering the same ages, the grain numbers increased in the following order, anterior, equatorial and posterior regions during embryonic stages, but decreased in the same order after birth. Therefore, it is suggested that the activity of RNA synthesis in PE cells is higher in the posterior region than in the anterior region during embryonic stages. But the activity ascends generally and becomes relatively higher in the anterior region, after birth. Comparing the retina and RPE, it was noted that the grain numbers in the RPE were more important than in the retina and that the maximal value was at P 1 in the retina, while it was at P 7 in the RPE. From these results, it can be concluded that the RNA synthesis ceases earlier in the retina than in the RPE.  相似文献   

9.
Dbn1 is a newly discovered gene in the drebrin gene family of mice. Previous studies have reported that Dbn1 is specifically expressed in the mouse brain suggesting its potential role in brain development. However, a detailed analysis of Dbn1 expression during mouse brain development has not been demonstrated. Here, we describe the expression pattern of Dbn1 and the coexpression of Dbn1 and actin during the development of the mouse brain from embryonic day 14 (E14) to adulthood and during the differentiation of neural stem cells (NSCs), as determined using immunohistochemistry, double-labeling immunofluorescence, and quantitative real-time polymerase chain reaction. During mouse brain development, Dbn1 expression level was high at E14, attenuated postnatally, reached its highest point at postnatal day 7 (P7), and showed a very low level at adulthood. Imaging data showed that Dbn1 was mainly expressed in the hippocampus, ventricular zone, and cortex, where NSCs are densely distributed, and that the intracellular distribution of Dbn1 was predominantly located in the cytoplasm edges and neurites. Moreover, the signal for colocalization of Dbn1 with actin was intense at E14, P0, and P7, but it was weak at adulthood. During NSC differentiation, Dbn1 mRNA expression increased after the onset of differentiation and reached its highest point at 3 days, followed by a decrease in expression. The imaging data showed that Dbn1 was increasingly expressed in the extending neurites in accordance with the cell morphological changes that occur during differentiation. Furthermore, obvious colocalization signals of Dbn1 with actin were found in the neurites and dendritic spines. Collectively, these results suggest that Dbn1 may play a key role in mouse brain development and may regulate NSC differentiation by filamentous actin.  相似文献   

10.
Cyclin E, a member of the G1 cyclins, is essential for the G1/S transition of the cell cycle in cultured cells, but its roles in vivo are not fully defined. The present study characterized the spatiotemporal expression profile of cyclin E in two representative brain regions in the mouse, the cerebral and cerebellar cortices. Western blotting showed that the levels of cyclin E increased towards adulthood. In situ hybridization and immunohistochemistry showed the distributions of cyclin E mRNA and protein were comparable in the cerebral cortex and the cerebellum. Immunohistochemistry for the proliferating cell marker, proliferating cell nuclear antigen (PCNA) revealed that cyclin E was expressed by both proliferating and non-proliferating cells in the cerebral cortex at embryonic day 12.5 (E12.5) and in the cerebellum at postnatal day 1 (P1). Subcellular localization in neurons was examined using immunofluorescence and western blotting. Cyclin E expression was nuclear in proliferating neuronal precursor cells but cytoplasmic in postmitotic neurons during embryonic development. Nuclear cyclin E expression in neurons remained faint in newborns, increased during postnatal development and was markedly decreased in adults. In various adult brain regions, cyclin E staining was more intense in the cytoplasm than in the nucleus in most neurons. These data suggest a role for cyclin E in the development and function of the mammalian central nervous system and that its subcellular localization in neurons is important. Our report presents the first detailed analysis of cyclin E expression in postmitotic neurons during development and in the adult mouse brain.  相似文献   

11.
12.
13.
Quantitative studies of ontogenetic changes in the levels of brain‐derived neurotrophic factor (BDNF) mRNA and its effector, BDNF protein, are not available for the retinal projection system. We used an electrochemiluminescence immunoassay to measure developmental changes in the tissue concentration of BDNF within the hamster retina and superior colliculus (SC). In the SC, we first detected BDNF (about 9 pg/mg tissue) on embryonic day 14 (E14). BDNF protein concentration in the SC rises about fourfold between (E14) and postnatal day 4 (P4), remains at a plateau through P15, then declines by about one‐third to attain its adult level by P18. By contrast, BDNF protein concentration in the retina remains low (about 1 pg/mg tissue) through P12, then increases 4.5‐fold to attain its adult level on P18. The developmental changes in retinal and collicular BDNF protein concentrations are temporally correlated with multiple events in the structural and functional maturation of the hamster retinal projection system. Our data suggest roles for BDNF in the cellular mechanisms underlying some of these events and are crucial to the design of experiments to examine those roles. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 173–187, 2001  相似文献   

14.
The growth and development of poultry embryos are easily affected by environmental factors, such as the incubation temperature and humidity. Metabolism, including lipid metabolism, during the embryonic stage is also important for the growth and development of poultry. Our study aimed to investigate the effects of incubation temperature on embryonic lipid metabolism in the liver of ducks. To fully evaluate the effects, thermal treatment was given between embryonic ages 11 and 24 days with a 1 °C higher incubation temperature than the control group, and lipid metabolism parameters in the liver and blood serum were analyzed both at embryonic stage day 20 and 2 weeks post-hatching. Our results showed no significant changes in the embryonic stage in total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) in the blood serum (P>0.05). Additionally, the mRNA expression levels and enzyme activities of fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), and elongase of very long chain fatty acids (ELOVL) did not show significant changes either in the embryonic stage or at hatching day 20 (P>0.05). However, there were significant changes in the gene expression and enzyme activities of TC, LDL-C and FAS at post-hatching stages (P≤0.05). These results may indicate that the thermal treatment has less influence on lipid metabolism in the embryonic stage but has a much stronger effect in the post-hatching stage.  相似文献   

15.
The expression of cyclin-dependent kinase 5 (Cdk5) and its regulatory subunits, p35 and p39, was investigated in rat brain from embryonic day 12 (E12) to postnatal 18 months (18M). The Cdk5 protein levels increased from E12 to postnatal day 7 (P7) and remained at this level until 18M. The Cdk5 kinase activity and the levels of both p35 mRNA and protein were low at E12, became prominent at E18-P14 but then decreased in the adult and aged rat brains of 3M to 18M. In comparison, the expression pattern of p39 appeared to have an inverse relationship to that of Cdk5 and p35. In regional distribution studies, p35 protein levels and Cdk5 kinase activity were significantly higher in the cerebral cortex and hippocampus, but lower in the cerebellum and striatum. These results suggested that Cdk5, p35 and p39 might have region-specific and developmental stage-specific functions in rat brain.  相似文献   

16.
We isolated a mouse cDNA encoding a protein that contains a BEACH domain, 5 WD40 repeats and a FYVE domain, which we designated as BWF1. The mRNA is approximately 10 kb in size and encodes a protein consisting of 3508 amino acids with a predicted molecular weight of 385 kDa. BWF1 has 45% homology with the Drosophila protein, blue cheese (BCHS). The BWF1 gene consists of 67 exons, which span 270 kb of genomic sequence, and has been mapped to mouse chromosome 5. Northern blot analysis revealed that it was strongly expressed in the liver, moderately in the kidney and testis, and weakly in the brain of adult mice. During the development of the mouse brain, BWF1 mRNA was abundant on embryonic day (E) 14-16; after birth, the level of BWF1 mRNA expression decreased markedly to reach the adult level at postnatal day 3. In situ hybridization analysis revealed that the expressed BWF1 mRNA was restricted to the marginal region both in E14 and E16 embryonic brain, but became diffuse after birth. Confocal microscopy studies of the epitope-tagged BWF1 protein showed that the protein was a cytoplasmic one.  相似文献   

17.
目的:探讨碳酸氢钠协同转运载体(NBC1)在大鼠胰腺胚胎发育期不同阶段核酸、蛋白水平的动态变化以及在腺泡和β细胞的定位表达。方法:采用高密度寡核苷酸芯片对孕12.5 d(E12.5)、E15.5、E18.5、新生和成年胰腺进行基因转录水平分析,用RT-PCR和Western blot分别验证了NBC1核酸和蛋白在E15.5、E18.5、新生和成年时期胰腺中的表达情况,用Double fluorescence immunohistochemistry分析了NBC1在E18.5、新生和成年时期胰腺腺泡和β细胞的定位表达。结果:在大鼠胰腺胚胎发育过程中,NBC1核酸、蛋白在E18.5时特异高表达,新生下降直至成年最低;在腺泡基底侧膜和β细胞膜有强烈的阳性信号,且在成年胰腺中β细胞膜阳性信号较腺泡基底侧膜强。NBC1的表达变化与其功能近似基因的表达趋势相反,而与其协同发挥作用的基因及胰腺特异基因的表达趋势一致。结论:NBC1在胰腺发育过程中不仅与结构形成而且与功能发挥相关。  相似文献   

18.
Accumulating evidence suggests that the actions of glucocorticoids in target tissues are critically determined by the expression of not only the glucocorticoid receptor (GR) but also the glucocorticoid-metabolizing enzymes, known as 11β-hydroxysteroid dehydrogenase types 1 and 2 (11β-HSD1 and 11β-HSD2). To gain insight into the role of glucocorticoids in fetal development, the expression patterns of the two distinct 11β-HSD isozymes and GR were studied in the mouse embryo from embryonic day 12.5 (E12.5, TERM = E19) to postnatal day 0.5 (P0.5) by in situ hybridization and immunohistochemistry, respectively. 11β-HSD1 mRNA was detected in the heart as early as E12.5 and maintained thereafter. In the lung and liver, 11β-HSD1 mRNA was first detected between E14.5 and E16.5, increased to high levels towards term and maintained after birth. Relatively low levels of 11β-HSD1 mRNA were also detected in the kidney, adrenal glands and gastrointestinal tract at E18.5. However, the mRNA for 11β-HSD1 was undetectable in all other embryonic tissues including the brain. In contrast, kidney was the only organ that expressed appreciable levels of 11β-HSD2 mRNA during embryonic life. The level of 11β-HSD2 mRNA in the kidney increased dramatically in the newborn, which coincided with expression of 11β-HSD2 mRNA in the whisker follicle, tooth and salivary gland. Distinct from the profiles of 11β-HSD1 and 11β-HSD2 mRNA, GR protein was detectable in all tissues at all ages studied except for the thymus, salivary gland, and bone. Taken together, the present study demonstrates that tissue- and developmentally-stage specific expression of 11β-HSD1 and 11β-HSD2 as well as GR occurs in the developing mouse embryo, thus highlighting the importance of these two enzymes and GR in regulating glucocorticoid-mediated maturational events in specific tissues during murine embryonic development.  相似文献   

19.
20.
Deciphering the expression pattern of K+ channel encoding genes during development can help in the understanding of the establishment of cellular excitability and unravel the molecular mechanisms of neuromuscular diseases. We focused our attention on genes belonging to the erg family, which is deeply involved in the control of neuromuscular excitability in Drosophila flies and possibly other organisms. Both in situ hybridisation and RNase Protection Assay experiments were used to study the expression pattern of mouse (m)erg1, m-erg2 and m-erg3 genes during mouse embryo development, to allow the pattern to be compared with their expression in the adult. M-erg1 is first expressed in the heart and in the central nervous system (CNS) of embryonic day 9.5 (E9.5) embryos; the gene appears in ganglia of the peripheral nervous system (PNS) (dorsal root (DRG) and sympathetic (SCG) ganglia, mioenteric plexus), in the neural layer of retina, skeletal muscles, gonads and gut at E13.5. In the adult m-erg1 is expressed in the heart, various structures of the CNS, DRG and retina. M-erg2 is first expressed at E9.5 in the CNS, thereafter (E13.5) in the neural layer of retina, DRG, SCG, and in the atrium. In the adult the gene is present in some restricted areas of the CNS, retina and DRG. M-erg3 displayed an expression pattern partially overlapping that of m-erg1, with a transitory expression in the developing heart as well. A detailed study of the mouse adult brain showed a peculiar expression pattern of the three genes, sometimes overlapping in different encephalic areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号