首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize isolates further within the SIVagm subtype, we studied four SIVagm isolates by cross-hybridization, molecular cloning, and nucleotide sequencing. Our results indicate an unexpected degree of genetic variation among isolates within the SIVagm subtype comparable to the variation between SIVmac and HIV-2.  相似文献   

2.
We constructed ten mutants of simian immunodeficiency virus isolated from African green monkey (SIVAGM), and nine mutants of human immunodeficiency virus type 2 (HIV-2) in vitro. Their infectivity, cytopathogenicity, transactivation potential, virus RNA, and protein synthesis were examined by transfection and infection experiments. Mutations in three structural (gag, pol, env) and two regulator (tat, rev) genes abolished the infectivity of both viruses, but vpx, vpr (HIV-2), and nef were dispensable and mutant viruses were indistinguishable phenotypically from wild type virus. A vif mutant of HIV-2 showed poor infectivity in cell-free condition, whereas SIVAGM mutants grew equally well with wild type virus. In transient transfection assays, rev mutants derived from both viruses produced mainly small mRNA species and no detectable virus proteins and particles. Transactivation potential of tat mutants originated from both viruses was about three- to ten-fold less than that of respective wild type DNAs, generating small amounts of virus.  相似文献   

3.
Serological surveys have revealed that 30 to 50% of wild-caught African green monkeys have antibodies reactive to simian immunodeficiency virus (SIV), a retrovirus related to human immunodeficiency virus (HIV). Although the nucleotide sequence of one SIVagm isolate, Tyo1, was recently reported, the extent of genetic variability among SIVagm isolates remains to be determined. Restriction endonuclease mapping of infectious molecular clones of two SIVagm isolates (266 and 385), described in this note, revealed conservation of only 4 of 39 sites across the genome. Partial sequence analysis of the molecular clones revealed only 80% amino acid sequence conservation in the pol gene. Although the three Kenyan SIVagm isolates, Tyo1, 385, and 266, are more closely related to each other than to other primate lentiviruses, genetic variation among these three isolates is much greater than that observed previously among individual HIV type 1 (HIV-1), HIV-2, or SIVmac isolates. Less variability among HIV-1 and HIV-2 isolates could be explained by recent entry into the human population. The extensive genetic variation in these Kenyan SIVagm isolates should prompt continued examination of SIVagm variability from dispersed geographic regions; SIVagm strains much more closely related to HIV-1, HIV-2, or SIVmac which would be reasonable candidates for recent cross-species transmission may be found.  相似文献   

4.
The genomes of simian immunodeficiency viruses isolated from African green monkeys (SIVagm) contain a single accessory gene homolog of human immunodeficiency virus type 1 (HIV-1) vpr. This genomic organization differs from that of SIVsm-SIVmac-HIV-2 group viruses, which contain two gene homologs, designated vpr and vpx, which in combination appear to share the functions of HIV-1 vpr. The in vitro role of the SIVagm homolog was evaluated with molecularly cloned, pathogenic SIVagm9063-2. These studies revealed that this gene shares properties of HIV-1 vpr, such as nuclear and virion localization. In addition, SIVagm mutants with inactivating mutations of vpr are unable to replicate in nondividing cells, such as macaque monocyte-derived macrophages, but replicate to almost wild-type levels in a susceptible human T-cell line. The transport of virus preintegration complexes into the nucleus in primary macrophages, as measured by the production of unintegrated circular viral DNA, is less efficient for the mutant viruses than it is for the wild-type virus. SIVagm mutants also replicate inefficiently in primary macaque peripheral blood mononuclear cells, with a propensity for substitutions that remove the inserted inactivating stop codon. These data, in conjunction with recent findings that the Vpr protein is capable of inducing G2 arrest, are consistent with designation of this SIVagm accessory gene as vpr to reflect its shared functions and properties with HIV-1 vpr.  相似文献   

5.
Elucidation of the phylogenetic origins of simian and human immunodeficiency viruses (SIV and HIV) is fundamental to the understanding of HIV pathogenesis and the spread of AIDS worldwide. In this study, we molecularly characterized multiple SIVAGM isolates from four different African green monkey species (vervet, grivet, sabaeus and tantalus monkeys). Phylogenetic analysis of partial (1 kb) env sequences indicated that all SIVAGM strains cluster together, and that they fall into four distinct sequence sub-groups according to their species of origin. However, alignment of long terminal repeat sequences revealed that SIVs from West African sabaeus monkeys contain a structural feature (a duplication of the transactivation response element) thus far only found in otherwise highly divergent lentiviruses infecting sooty mangabeys (SIVSM) and humans (HIV-2). To determine whether there were additional similarities with the SIVSM/HIV-2 group, a full-length replication competent sabaeus provirus was cloned and sequenced. In phylogenetic trees derived from the central and 3' coding regions, the sabaeus virus clustered with SIVAGM isolates from other African green monkey species. However, in trees derived from the 3' half of gag and the adjacent 5' region of pol, the sabaeus virus grouped with the SIVSM/HIV-2 lineage. These results indicated that the sabaeus virus comprised a mosaic genome which must have resulted from recombination of divergent lentiviruses in the distant past. A second, independent sabaeus isolate exhibited similar phylogenetic relationships, suggesting that all West African green monkey viruses share this complex evolutionary history. Taken together, these results indicate that African green monkeys have been infected with SIVAGM for very long periods of time, and that recombination and cross-species transmission in the wild have contributed to the genetic complexity of primate lentiviruses.  相似文献   

6.
The simian immunodeficiency viruses (SIV) naturally infect a wide range of African primates, including African green monkeys (AGM). Despite moderate to high levels of plasma viremia in naturally infected AGM, infection is not associated with immunodeficiency. We recently reported that SIVagmVer90 isolated from a naturally infected vervet AGM induced AIDS following experimental inoculation of pigtailed macaques. The goal of the present study was to evaluate the replication of this isolate in two species of AGM, sabaeus monkeys (Chlorocebus sabaeus) and vervets (C. pygerythrus). Inoculation of sabaeus AGM with SIVagmVer90 resulted in low and variable primary and set-point viremia (<10(2) to 10(4) copies/ml). In contrast, inoculation of vervet AGM with either SIVagmVer90 or blood from a naturally infected vervet (Ver1) resulted in high primary viremia and moderate plateau levels, similar to the range seen in naturally infected vervets from this cohort. CD4(+) T cells remained stable throughout infection, even in AGM with persistent high viremia. Despite the lack of measurable lymphadenopathy, infection was associated with an increased number of Ki-67(+) T cells in lymph node biopsies, consistent with an early antiviral immune response. The preferential replication of SIVagmVer in vervet versus sabaeus AGM shows that it is critical to match AGM species and SIV strains for experimental models of natural SIV infection.  相似文献   

7.
The prevalence, natural history, and genetic characteristics of simian immunodeficiency virus (SIV) infections in most feral African monkey species are presently unknown, yet this information is essential to elucidate their origin and relationship to other simian and human immunodeficiency viruses. In this study, a combination of classical and molecular approaches were used to identify and characterize SIV isolates from West African green monkeys (Cercopithecus sabaeus) (SIVagm isolates). Four SIVagm viruses from wild-caught West African green monkeys were isolated and analyzed biologically and molecularly. Amplification, cloning, and sequencing of a 279-bp polymerase fragment directly from uncultured peripheral blood mononuclear cells was facilitated by the use of nested polymerase chain reaction. The results indicated that West African green monkeys are naturally infected with SIVs which are closely related to East African SIVagm isolates. However, structural, antigenic, and genetic differences were observed which strongly suggest that the West African green monkey viruses comprise a phylogenetically distinct subgroup of SIVagm. These findings support our previous hypothesis that SIVagm viruses may have evolved and diverged coincident with the evolution and divergence of their African green monkey host. In addition, this study describes a polymerase chain reaction-based approach that allows the identification and molecular analysis of divergent SIV strains directly from primary monkey tissue. This approach, which does not depend on virus isolation methods, should facilitate future studies aimed at elucidating the origins and natural history of SIVs in feral African green monkey populations.  相似文献   

8.
Simian immunodeficiency virus from African green monkeys.   总被引:10,自引:14,他引:10       下载免费PDF全文
Simian immunodeficiency virus (SIV) was isolated from the total peripheral blood mononuclear cell population and the monocyte-macrophage adherent cell population of three seropositive green monkeys originating from Kenya. SIV from these African green monkeys (SIVagm) was isolated and continuously produced with the MOLT-4 clone 8 (M4C18) cell line but not with a variety of other cells including HUT-78, H9, CEM, MT-4, U937, and uncloned MOLT-4 cells. Once isolated, these SIVagm isolates were found to replicate efficiently in M4C18, SupT1, MT-4, U937, and Jurkat-T cells but much less efficiently if at all in HUT-78, H9, CEM, and MOLT-4 cells. The range of CD4+ cells fully permissive for replication of these SIVagm isolates thus differs markedly from that of previous SIV isolates from macaques (SIVmac). These SIVagm isolates had a morphogenesis and morphology like that of human immunodeficiency virus (HIV) and other SIV isolates. Antigens of SIVagm and SIVmac cross-reacted by comparative enzyme-linked immunosorbent assay only with reduced efficiency, and optimal results were obtained when homologous antibody and antigen were used. Western blotting (immunoblotting) of purified preparations of SIVagm isolate 385 (SIVagm385) revealed major viral proteins of 120, 27, and 16 kilodaltons (kDa). The presumed major core protein of 27 kDa cross-reacted antigenically with the corresponding proteins of SIVmac (28 kDa) and HIV-1 (24 kDa) by Western blotting. Hirt supernatant replicative-intermediate DNA prepared from cells freshly infected with SIVagm hybridized to SIVmac and HIV-2 DNA probes. Detection of cross-hybridizing DNA sequences, however, required very low stringency, and the restriction endonuclease fragmentation patterns of SIVagm were not similar to those of SIVmac and HIV-2. The nucleotide sequence of a portion of the pol gene of SIVagm385 revealed amino acid identities of 65% with SIVmac142, 64% with HIV-2ROD, and 56% with HIV-1BRU; SIVagm385 is thus related to but distinct from previously described primate lentiviruses SIVmac, HIV-1, and HIV-2. Precise information on the genetic makeup of these and other SIV isolates will possibly lead to better understanding of the history and evolution of these viruses and may provide insight into the origin of viruses that cause acquired immunodeficiency syndrome in humans.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) preferentially utilizes the CCR5 coreceptor for target cell entry in the acute phase of infection, while later in disease progression the virus switches to the CXCR4 coreceptor in approximately 50% of patients. In response to HIV-1 the adaptive immune response is triggered, and antibody (Ab) production is elicited to block HIV-1 entry. We recently determined that dendritic cells (DCs) can efficiently capture Ab-neutralized HIV-1, restore infectivity, and transmit infectious virus to target cells. Here, we tested the effect of Abs on trans transmission of CCR5 or CXCR4 HIV-1 variants. We observed that transmission of HIV-1 by immature as well as mature DCs was significantly higher for CXCR4- than CCR5-tropic viral strains. Additionally, neutralizing Abs directed against either the gp41 or gp120 region of the envelope such as 2F5, 4E10, and V3-directed Abs inhibited transmission of CCR5-tropic HIV-1, whereas Ab-treated CXCR4-tropic virus demonstrated unaltered or increased transmission. To further study the effects of coreceptor usage we tested molecularly cloned HIV-1 variants with modifications in the envelope that were based on longitudinal gp120 V1 and V3 variable loop sequences from a patient progressing to AIDS. We observed that DCs preferentially facilitated infection of CD4+ T lymphocytes of viral strains with an envelope phenotype found late in disease. Taken together, our results illustrate that DCs transmit CXCR4-tropic HIV-1 much more efficiently than CCR5 strains; we hypothesize that this discrimination could contribute to the in vivo coreceptor switch after seroconversion and could be responsible for the increase in viral load.  相似文献   

10.
African green monkeys (AGMs) infected by simian immunodeficiency virus (SIV) SIVagm are resistant to AIDS. SIVagm-infected AGMs exhibit levels of viremia similar to those described during pathogenic human immunodeficiency virus type 1 (HIV-1) and SIVmac infections in humans and macaques, respectively, but contain lower viral loads in their lymph nodes. We addressed the potential role of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN; CD209) in viral dissemination. In previous studies, it has been shown that human DC-SIGN and macaque DC-SIGN allow transmission of HIV and SIVmac to T cells. Here, we looked at the ability of DC-SIGN derived from AGM lymph nodes to interact with SIVagm. We show that DC-SIGN-expressing cells are present mainly in the medulla and often within the cortex and/or paracortex of AGM lymph nodes. We describe the isolation and characterization of at least three isoforms of dc-sign mRNA in lymph nodes of AGMs. The predicted amino acid sequence from the predominant mRNA isoform, DC-SIGNagm1, is 92 and 99% identical to the corresponding human and rhesus macaque DC-SIGN amino acid sequences, respectively. DC-SIGNagm1 is characterized by the lack of the fourth motif in the repeat domain. This deletion was also detected in the dc-sign gene derived from thirteen animals belonging to five other African monkey species and from four macaques (Macaca fascicularis and M. mulatta). Despite three- to seven-amino-acid modifications compared to DC-SIGNmac, DC-SIGNagm1 allows transmission of SIVagm to T cells. Furthermore, AGM monocyte-derived dendritic cells (MDDC) expressed at least 100,000 DC-SIGN molecules and were able to transmit SIVagm to T cells. At a low multiplicity of infection (10(-5) 50% tissue culture infective doses/cell), viral transmission by AGM MDDC was mainly DC-SIGN dependent. The present study reveals that DC-SIGN from a natural host species of SIV has the ability to act as an efficient attachment and transmission factor for SIVagm and suggests the absence of a direct link between this ability and viral load levels in lymph nodes.  相似文献   

11.
The virulence of three isolates of simian immunodeficiency virus from African green monkeys (SIVagm) was studied in rhesus and pigtailed macaques. None of 15 rhesus monkeys and one of four pigtailed monkeys died from infection during the time they were studied (up to 33 months). SIVagm was only isolated from rhesus monkeys for up to 2 months after inoculation. However, when these animals were secondarily infected with Simian acquired immunodeficiency syndrome retrovirus type 1 (SRV-1), SIVagm was activated and isolated. Dual infection caused increased mortality.  相似文献   

12.
Abstract: An apparent species-specific relatedness of SIVagm suggests a coevolution with their natural hosts. However, the exact species or subspecies classification of African green monkeys, AGM, is uncertain because current classification schemes rely on phenotype markers, while more definitive genetic data are lacking. In this study, the CD4 protein involved in tissue type recognition was genetically cloned and sequenced from PBMC RNA from all AGM species, including Barbados green monkeys (BGM). Phylogenetic trees were constructed that also included genomic CD4 nucleotide sequences from patas, sooty mangabeys, rhesus and pig-tail macaques, chimpanzees, and humans. Chimpanzees and humans consistently clustered together. Monkeys within the Cercopithecus genus formed a separate cluster which included pata monkeys, supporting its grouping as a member of Cercopithecus. Surprisingly, sooty mangabeys were genetically more closely related to Asian macaques than to other African species, which might explain why macaques are more susceptible to infection by the SIVsm group than to infection by SIVagm or HIV-1 and why patas, on the other hand, are highly susceptible to SIVagm infection. Based on CD4 genetic data, tantalus, vervets, grivets, and sabaeus formed separate subgroups with BGM grouping closely with vervets. The branching order of the AGM species was related to that of their respective SIVagm env sequences. The study suggests a strong correlation between CD4 phylogeny and the susceptibility of the host species to infection by a specific lentivirus and supports the assumption of a coevolution of SIVagm and AGM. CD4 sequencing is suggested as a relevant method for genetic determination of primate species.  相似文献   

13.
Simian immunodeficiency virus (SIV)/Mne has been inoculated into three species of macaques and into baboons. Virus was isolated from all the macaques who subsequently died at 15 to 120 weeks (mean 80 weeks) with various manifestations of immune deficiency. Individual animals varied in their viral antibody profile as a function of time after infection. Independent SIV isolates obtained from African green monkeys and magabeys were compared to SIV/Mne for their ability to replicate in lymphocytes and macrophages and with respect to the immunological relatedness of their viral proteins. Antibodies present in human immunodeficiency virus-2 (HIV-2)-infected individuals were readily detected by the virus produced by a single-cell clone of SIV/Mne.  相似文献   

14.
Simian varicella virus (SVV) infection of primates shares clinical, pathological, immunological, and virological features with varicella-zoster virus infection of humans. Natural varicella infection was simulated by exposing four SVV-seronegative monkeys to monkeys inoculated intratracheally with SVV, in which viral DNA and RNA persist in multiple tissues for more than 1 year (T. M. White, R. Mahalingam, V. Traina-Dorge, and D. H. Gilden, J. Neurovirol. 8:191-205, 2002). The four naturally exposed monkeys developed mild varicella 10 to 14 days later, and skin scrapings taken at the time of the rash contained SVV DNA. Analysis of multiple ganglia, liver, and lung tissues from the four naturally exposed monkeys sacrificed 6 to 8 weeks after resolution of the rash revealed SVV DNA in ganglia at multiple levels of the neuraxis but not in the lung or liver tissue of any of the four monkeys. This animal model provides an experimental system to gain information about varicella latency with direct relevance to the human disease.  相似文献   

15.
CXCR4-using (X4) human immunodeficiency virus type 1 (HIV-1) variants evolve from CCR5-using (R5) variants relatively late in the natural course of infection in 50% of HIV-1 subtype B-infected individuals and subsequently coexist with R5 HIV-1 variants. This relatively late appearance of X4 HIV-1 variants is poorly understood. Here we tested the neutralization sensitivity for soluble CD4 (sCD4) and the broadly neutralizing antibodies IgG1b12, 2F5, 4E10, and 2G12 of multiple coexisting clonal R5 and (R5)X4 (combined term for monotropic X4 and dualtropic R5X4 viruses) HIV-1 variants that were obtained at two time points after the first appearance of X4 variants in five participants of the Amsterdam Cohort Studies on HIV-1 infection and AIDS. Recently emerged (R5)X4 viruses were significantly more sensitive to neutralization by the CD4-binding-site-directed agents sCD4 and IgG1b12 than their coexisting R5 viruses. This difference was less pronounced at the later time point. Early (R5)X4 variants from two out of four patients were also highly sensitive to neutralization by autologous serum (50% inhibition at serum dilutions of >200). Late (R5)X4 viruses from these two patients were neutralized at lower serum dilutions, which suggested escape of X4 variants from humoral immunity. Autologous neutralization of coexisting R5 and (R5)X4 variants was not observed in the other patients. In conclusion, the increased neutralization sensitivity of HIV-1 variants during the transition from CCR5 usage to CXCR4 usage may imply an inhibitory role for humoral immunity in HIV-1 phenotype evolution in some patients, thus potentially contributing to the late emergence of X4 variants.  相似文献   

16.
The mechanisms underlying the lack of disease progression in natural simian immunodeficiency virus (SIV) hosts are still poorly understood. To test the hypothesis that SIV-infected African green monkeys (AGMs) avoid AIDS due to virus replication occurring in long-lived infected cells, we infected six animals with SIVagm and treated them with potent antiretroviral therapy [ART; 9-R-(2-phosphonomethoxypropyl) adenine (tenofovir) and beta-2,3-dideoxy-3-thia-5-fluorocytidine (emtricitabine)]. All AGMs showed a rapid decay of plasma viremia that became undetectable 36 h after ART initiation. A significant decrease of viral load was observed in peripheral blood mononuclear cells and intestine. Mathematical modeling of viremia decay post-ART indicates a half-life of productively infected cells ranging from 4 to 9.5 h, i.e., faster than previously reported for human immunodeficiency virus and SIV. ART induced a slight but significant increase in peripheral CD4(+) T-cell counts but no significant changes in CD4(+) T-cell levels in lymph nodes and intestine. Similarly, ART did not significantly change the levels of cell proliferation, activation, and apoptosis, already low in AGMs chronically infected with SIVagm. Collectively, these results indicate that, in SIVagm-infected AGMs, the bulk of virus replication is sustained by short-lived cells; therefore, differences in disease outcome between SIVmac infection of macaques and SIVagm infection of AGMs are unlikely due to intrinsic differences in the in vivo cytopathicities between the two viruses.  相似文献   

17.
18.
We have examined the viral load in the peripheral blood of simian immunodeficiency virus (SIV)-infected African green monkeys with a view to the unexplained apathogenicity of African green monkey SIV (SIVagm) in its natural host. By using polymerase chain reaction, viral DNA was detected in fresh peripheral blood mononuclear cells (PBMC) of each of nine seropositive animals. The virus DNA load was variable among the monkeys tested, ranging from 5 to 50 (mean = 15) copies per 10(5) PBMC, which is comparable to that of human immunodeficiency virus type 1 (HIV-1) in humans. The level of infectious SIVagm in PBMC was measured by endpoint dilution cultures. SIVagm was recovered from PBMC from 14 of 17 antibody-positive monkeys (82%), and the mean SIVagm titer in PBMC of seropositive African green monkeys was 10 tissue culture infectious doses per 10(6) cells, similar to the titer shown for HIV in asymptomatic carriers. Free infectious virus was isolated from the plasma of 4 of 17 monkeys (24%), and SIVagm expression in peripheral blood in vivo, as demonstrated by in situ hybridization, was detectable only in those animals which were viremic. SIVagm replication is therefore not totally suppressed in vivo, and SIVagm has a viral load equivalent to that seen for HIV-1 in asymptomatic humans.  相似文献   

19.
To investigate the basis for envelope (Env) determinants influencing simian immunodeficiency virus (SIV) tropism, we studied a number of Envs that are closely related to that of SIVmac239, a pathogenic, T-tropic virus that is neutralization resistant. The Envs from macrophage-tropic (M-tropic) virus strains SIVmac316, 1A11, 17E-Fr, and 1100 facilitated infection of CCR5-positive, CD4-negative cells. In contrast, the SIVmac239 Env was strictly dependent upon the presence of CD4 for membrane fusion. We also found that the Envs from M-tropic virus strains, which are less pathogenic in vivo, were very sensitive to antibody-mediated neutralization. Antibodies to the V3-loop, as well as antibodies that block SIV gp120 binding to CCR5, efficiently neutralized CD4-independent, M-tropic Envs but not the 239 Env. However, triggering the 239 Env with soluble CD4, presumably resulting in exposure of the CCR5 binding site, made it as neutralization sensitive as the M-tropic Envs. In addition, mutations of N-linked glycosylation sites in the V1/V2 region, previously shown to enhance antigenicity and immunogenicity, made the 239 Env partially CD4 independent. These findings indicate that Env-based determinants of M tropism of these strains are generally associated with decreased dependence on CD4 for entry into cells. Furthermore, CD4 independence and M tropism are also associated with neutralization sensitivity and reduced pathogenicity, suggesting that the humoral immune response may exert strong selective pressure against CD4-independent M-tropic SIVmac strains. Finally, genetic modification of viral Envs to enhance CD4 independence may also result in improved humoral immune responses.  相似文献   

20.
Virus-specific cytotoxic T lymphocytes (CTL) are critical for control of human immunodeficiency virus type 1 replication. However, viral escape from CTL recognition can undermine this immune control. Here we demonstrate the high frequency and pattern of viral escape from dominant epitope-specific CTL in SIV gag DNA-vaccinated rhesus monkeys following a heterologous simian immunodeficiency virus (SIV) challenge. DNA-vaccinated monkeys exhibited initial effective control of the SIV challenge, but this early control was lost by serial breakthroughs of viral replication over a 3-year follow-up period. Increases in plasma viral RNA correlated temporally with declines of dominant SIV epitope-specific CD8(+) T-lymphocyte responses and the emergence of viral mutations that escaped recognition by dominant epitope-specific CTL. Viral escape from CTL occurred in a total of seven of nine vaccinated and control monkeys, including three animals that initially controlled viral replication to undetectable levels of plasma viral RNA. These data suggest that CTL exert selective pressure on viral replication and that viral escape from CTL may be a limitation of CTL-based AIDS vaccine strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号