首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
通过诱变得到十一株木素过氧化物酶酶活降低的黄孢原毛平革菌(Phanerochaetechrysosporium)突变株,用灰色理论分析了其木素过氧化物酶类的产生与木素降解能力间的相关性,并从中筛选到一株木素过氧化物酶缺陷、锰过氧化物酶酶活明显降低的突变株,其木素降解能力为原始菌株的80%左右。该菌粗酶液作用于纤维素酶酶解杉木木素和天然褐腐木素,可产生小分子的木素降解产物,此反应不需H2O2参与。红外光谱分析表明粗酶液对木素的作用主要为氧化作用,因此推测此突变株粗酶液中含有不同于木素过氧化物酶和锰过氧化物酶的与木素氧化降解有关的酶类  相似文献   

3.
4.
We report cloning and sequencing of gene ps1 encoding a versatile peroxidase combining catalytic properties of lignin peroxidase (LiP) and manganese peroxidase (MnP) isolated from lignocellulose cultures of the white-rot fungus Pleurotus eryngii. The gene contains 15 putative introns, and the deduced amino acid sequence consists of a 339-residue mature protein with a 31-residue signal peptide. Several putative response elements were identified in the promoter region. Amino acid residues involved in oxidation of Mn(2+) and aromatic substrates by direct electron transfer to heme and long-range electron transfer from superficial residues as predicted by analogy with Phanerochaete chrysosporium MnP and LiP, respectively. A dendrogram is presented illustrating sequence relationships between 29 fungal peroxidases.  相似文献   

5.
A peroxidase oxidizing Mn2+ (MnP) is described for the first time in Bjerkandera adusta, a fungus efficiently degrading xenobiotic compounds. The MnP appeared as two isoenzymes, which were purified to homogeneity together with two lignin peroxidases (LiP). Their N-terminal sequences were identical, but the MnP isoenzymes showed more basic isoelectric points and differences in amino acid composition and catalytic properties. The B. adusta LiP is similar to LiP from Phanerochaete chrysosporium. However, the interest of the MnP described here is related to its ability to catalyze Mn2+-mediated as well as Mn2+-independent reactions on aromatic compounds, which may be of use for applications in biotechnology and environmental technology.  相似文献   

6.
4-Chlorophenol (4-CP) degradation was investigated by suspended and immobilized Phanerochaete chrysosporium conducted in static and agitated cultures. The best results were achieved when experiment was carried out in a rotating biological contactor instead of an Erlenmeyer flask, for both batch degradation and repeated batch degradation. The relative contribution of lignin peroxidase (LiP) versus manganese peroxidase (MnP) to the 4-CP degradation by P. chrysosporium was investigated. 4-CP degradation slightly increased and a high level of MnP (38 nKat ml(-1)) was produced when P. chrysosporium was grown at high Mnll concentration. High LiP production in the medium had no significant effect on 4-CP degradation. 4-CP degradation occurred when P. chrysosporium was grown in a medium that repressed LiP and MnP production. This result indicates that LiP and MnP are not directly involved in 4-CP degradation by P. chrysosporium.  相似文献   

7.
Two new, at primary sequence and protein structure levels different, manganese peroxidase encoding genes from the white rot basidiomycete Phlebia radiata are described. Both genes are expressed in liquid cultures of P. radiata containing milled alder wood or glucose as carbon source, and high Mn(2+) concentration. The gene Pr-mnp2 contains 7 introns and codes for a 390 amino-acid polypeptide, whereas Pr-mnp3 presents 11 introns and codes for a 362 amino-acid protein. The 3-D molecular models confirm this diversity; the predicted Pr-MnP2 with a long C-terminal extension has the highest structural similarity with the crystal structure of Phanerochaete chrysosporium MnP1, whereas the shorter Pr-MnP3 protein is structurally more related to lignin peroxidases (P. chrysosporium LiPH8/H2). In Pr-MnP3, however, an alanine replaces the exposed tryptophan present in LiP and versatile peroxidases, and both Pr-MnPs include the conserved Mn(2+)-binding amino-acid ligands. This is the first occasion when two enzymes of similar function and origin fall into phylogenetically distinct subfamilies within the expanding dendrogram of the class II fungal secretory heme peroxidases.  相似文献   

8.
The biological transformation of lignocellulose of Achras zapota by white rot fungi, Phanerochaete chrysosporium, in solid state fermentation (SSF) was studied for 28 days. The kinetic transformation of lignocellulose was monitored through the determination of acid soluble and acid insoluble lignin content, total organic carbon (TOC) and chemical oxygen demand (COD). The lignolytic enzymes, lignin peroxidase (LiP) and manganese peroxidase (MnP) were quantified on weekly intervals. The degradation of lignin and other structural moieties of A. zapota lignocellulose were confirmed by high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The degradation of lignin was increased after 7 days of fermentation with the release of water soluble and fermentable products. The LiP and MnP activities were increased in the first week of SSF and lignin degradation was also set to increase. This was accompanied with increase in COD by 94.6% and TOC by 80% and lignin content was decreased by 76%. The maximum activities of the enzymes LiP and MnP in extracellular fluid of SSF under nitrogen limitation, at pH 5.0, at temperature 37 degrees C and at 60% humidity were 2100 U/L and 1200 U/L.  相似文献   

9.
Recently, Mn(II) has been shown to induce manganese peroxidases (MnPs) and repress lignin peroxidases (LiPs) in defined liquid cultures of several white rot organisms. The present work shows that laccase is also regulated by Mn(II). We therefore used Mn(II) to regulate production of LiP, MnP, and laccase activities while determining the effects of Mn(II) on mineralization of ring-labeled synthetic lignin. At a low Mn(II) level, Phanerochaete chrysosporium and Phlebia brevispora produced relatively high titers of LiPs but only low titers of MnPs. At a high Mn(II) level, MnP titers increased 12- to 20-fold, but LiPs were not detected in crude broths. P. brevispora formed much less LiP than P. chrysosporium, but it also produced laccase activity that increased more than sevenfold at the high Mn(II) level. The rates of synthetic lignin mineralization by these organisms were similar and were almost seven times higher at low than at high Mn(II). Increased synthetic lignin mineralization therefore correlated with increased LiP, not with increased MnP or laccase activities.  相似文献   

10.
Abstract: The possible roles of oxalic acid, veratryl alcohol, and manganese were investigated in relation to lignin biodegradation by white-rot basidiomycetes. Oxalate inhibited both lignin peroxidase (LiP) and manganese-peroxidase (MnP). and was decarboxylated by the mediation of veratryl alcohol and Mn. Oxalate was shown to regulate the mineralization of lignin in the in vivo system of Phanerochaete chrysosporium . In the brown-rot wood decay process, oxalic acid may serve as an acid catalyst as well as an electron donor for the Fenton reaction, to breakdown cellulose and hemicellulose. Oxaloacetase and glyoxylate oxidase may play a key role in production of oxalic acid by white-rot and brown-rot basidiomycetes such as Phanerochaete chrysosporium, Coriolus versicolor and Tyromyces palustris . A possible role of oxalate metabolism is discussed in relation to the physiology of wood-rotting fungi.  相似文献   

11.
Biobleaching of hardwood unbleached kraft pulp (UKP) by Phanerochaete chrysosporium and Trametes versicolor was studied in the solid-state fermentation system with different culture media. In this fermentation system with low-nitrogen and high-carbon culture medium, pulp brightness increased by 15 and 30 points after 5 days of treatment with T. versicolor and P. chrysosporium, respectively, and the pulp kappa number decreased with increasing brightness. A comparison of manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase activities assayed by using fungus-treated pulp and the filtrate after homogenizing the fungus-treated pulp in buffer solution indicated that enzymes secreted from fungi were adsorbed onto the UKP and that assays of these enzyme activities should be carried out with the treated pulp. Time course studies of brightness increase and MnP activity during treatment with P. chrysosporium suggested that it was difficult to correlate them on the basis of data obtained on a certain day of incubation, because the MnP activity fluctuated dramatically during the treatment time. When brightness increase and cumulative MnP, LiP, and laccase activities were determined, a linear relationship between brightness increase and cumulative MnP activity was found in the solid-state fermentation system with both P. chrysosporium and T. versicolor. This result suggests that MnP is involved in brightening of UKP by white rot fungi.  相似文献   

12.
Manganese peroxidase (MnP) and lignin peroxidase (LiP) were produced by growing a white-rot fungusBjerkandera adusta statically, on a wood meal/wheat bran culture in flasks. MnP and LiP reached their maximum activity after 6 and 19 days of inoculation, respectively. Both MnP and LiP are thought to be important enzymes in lignin biodegradation byB. adusta. Ion exchange chromatography showed thatB. adusta produced a single LiP and a single MnP enzyme in wood meal/wheat bran culture. These enzymes were separated and characterized. The molecular weight of MnP was 46,500 with a pl of 3.9. The molecular weight of LiP was estimated to be 47,000 with a pl of 3.5. Spectral analysis demonstrated that both enzymes are heme proteins. Production of these enzymes was also achieved using a rotarysolid culture fermenter. MnP, LiP and veratryl alcohol oxidase were produced byB. adusta in the fermenter.  相似文献   

13.
The relative contributions of lignin peroxidase (LiP) and manganese peroxidase (MnP) to the decolorization of olive mill wastewaters (OMW) by Phanerochaete chrysosporium were investigated. A relatively low level (25%) of OMW decolorization was found with P. chrysosporium which was grown in a medium with a high Mn(II) concentration and in which a high level of MnP (0.65 (mu)M) was produced. In contrast, a high degree of OMW decolorization (more than 70%) was observed with P. chrysosporium which was grown in a medium with a low Mn(II) concentration but which resulted in a high level of LiP activity (0.3 (mu)M). In this culture medium, increasing the Mn(II) concentration resulted in decreased levels of OMW decolorization and LiP activity. Decolorization by reconstituted cultures of P. chrysosporium was found to be more enhanced by the addition of isolated LiP than by the addition of isolated MnP. The highest OMW decolorization levels were obtained at low initial chemical oxygen demands combined with high levels of extracellular LiP. These data, plus the positive effect of veratryl alcohol on OMW decolorization and LiP activity, indicate that culture conditions which yield high levels of LiP activity lead to high levels of OMW decolorization.  相似文献   

14.
A visual method for the selective screening of lignin degrading enzymes, produced by white rot fungi (WRF), was investigated by the addition of coloring additives to solid media. Of the additives used in the enzyme production media, guaiacol and RBBR could be used for the detection of lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase. Syringaldazine and Acid Red 264 were able for the detection of both the MnP and laccase, and the LiP and laccase, respectively, and a combination of these two additives was able to detect each of the ligninases produced by the WRF on solid media.  相似文献   

15.
The specific enzymes associated with lignin degradation in solid lignocellulosic substrates have not been identified. Therefore, we examined extracts of cultures of Phanerochaete chrysosporium that were degrading a mechanical pulp of aspen wood. Western blot (immunoblot) analyses of the partially purified protein revealed lignin peroxidase, manganese-dependent peroxidase (MnP), and glyoxal oxidase. The dominant peroxidase, an isoenzyme of MnP (pI 4.9), was isolated, and its N-terminal amino acid sequence and amino acid composition were determined. The results reveal both similarities to and differences from the deduced amino acid sequences from cDNA clones of dominant MnP isoenzymes from liquid cultures. Our results suggest, therefore, that the ligninolytic-enzyme-encoding genes that are expressed during solid substrate degradation differ from those expressed in liquid culture or are allelic variants of their liquid culture counterparts. In addition to lignin peroxidase, MnP, and glyoxal oxidase, xylanase and protease activities were present in the extracts of the degrading pulp.  相似文献   

16.
We studied the effect of manganese and various organic chelators on the distribution, depolymerization, and mineralization of synthetic 14C-labeled lignins (DHP) in cultures of Phanerochaete chrysosporium. In the presence of high levels of manganese [Mn(II) or Mn(III)], along with a suitable chelator, lignin peroxidase (LiP) production was repressed and manganese peroxidase (MnP) production was stimulated. Even though partial lignin depolymerization was observed under these conditions, further depolymerization of the polymer to smaller compounds was more efficient when low levels of manganese were present. LiPs were prevalent under these latter conditions, but MnPs were also present. Mineralization was more efficient with low manganese. These studies indicate that MnP performs the initial steps of DHP depolymerization but that LiP is necessary for further degradation of the polymer to lower-molecular-weight products and mineralization. We also conclude that a soluble Mn(II)-Mn(III) organic acid complex is necessary to repress LiP.  相似文献   

17.
The specific enzymes associated with lignin degradation in solid lignocellulosic substrates have not been identified. Therefore, we examined extracts of cultures of Phanerochaete chrysosporium that were degrading a mechanical pulp of aspen wood. Western blot (immunoblot) analyses of the partially purified protein revealed lignin peroxidase, manganese-dependent peroxidase (MnP), and glyoxal oxidase. The dominant peroxidase, an isoenzyme of MnP (pI 4.9), was isolated, and its N-terminal amino acid sequence and amino acid composition were determined. The results reveal both similarities to and differences from the deduced amino acid sequences from cDNA clones of dominant MnP isoenzymes from liquid cultures. Our results suggest, therefore, that the ligninolytic-enzyme-encoding genes that are expressed during solid substrate degradation differ from those expressed in liquid culture or are allelic variants of their liquid culture counterparts. In addition to lignin peroxidase, MnP, and glyoxal oxidase, xylanase and protease activities were present in the extracts of the degrading pulp.  相似文献   

18.
We studied the effect of manganese and various organic chelators on the distribution, depolymerization, and mineralization of synthetic 14C-labeled lignins (DHP) in cultures of Phanerochaete chrysosporium. In the presence of high levels of manganese [Mn(II) or Mn(III)], along with a suitable chelator, lignin peroxidase (LiP) production was repressed and manganese peroxidase (MnP) production was stimulated. Even though partial lignin depolymerization was observed under these conditions, further depolymerization of the polymer to smaller compounds was more efficient when low levels of manganese were present. LiPs were prevalent under these latter conditions, but MnPs were also present. Mineralization was more efficient with low manganese. These studies indicate that MnP performs the initial steps of DHP depolymerization but that LiP is necessary for further degradation of the polymer to lower-molecular-weight products and mineralization. We also conclude that a soluble Mn(II)-Mn(III) organic acid complex is necessary to repress LiP.  相似文献   

19.
The white rot fungus Phanerochaete chrysosporium was cultivated in a perforated plate bioreactor and the expression of activities of manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) was measured. Peak activities of the two enzymes were reached close to day 11 and therefore the cultivation was terminated on that day. Extracellular proteins were concentrated and both peroxidases separated by isoelectric focusing. Degradation of technical PCB mixtures containing low and highly chlorinated congeners (Delor 103 and Delor 106 as equivalents of Aroclor 1242 and Aroclor 1260, respectively) was performed using intact mycelium, crude extracellular liquid and enriched MnP and LiP. A decrease in PCB concentration caused by a 44-h treatment with mycelium (74% w/w for Delor 103 and 73% for Delor 106) or crude extracellular liquid (62% for Delor 103 and 58% for Delor 106) was observed. The degradation was not substrate-specific, because no significant differences between the respective degradation rates were observed with di-, tri-, tetra-, penta-, hexa-, hepta-, and octachlorinated congeners. In contrast, MnP and LiP isolated from the above-mentioned extracellular liquid did not catalyse any degradation.  相似文献   

20.
Biobleaching of manganese-less oxygen-delignified hardwood kraft pulp (E-OKP) by the white-rot fungi Phanerochaete sordida YK-624 and P. chrysosporium was examined in the solid-state fermentation system. P. sordida YK-624 possessed a higher brightening activity than P. chrysosporium, increasing pulp brightness by 13.4 points after seven days of treatment. In these fermentation systems, lignin peroxidase (LiP) activity was detected as the principle ligninolytic enzyme, and manganese peroxidase and laccase activities were scarcely detected over the course of treatment of E-OKP by either fungus. Moreover, a linear relationship between brightness increase and cumulative LiP activity was observed under all tested culture conditions with P. sordida YK-624 and P. chrysosporium. These results indicated that LiP is involved in the brightening of E-OKP by both white-rot fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号