首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Effects of growth temperature and winter duration on leaf longevity were compared between a spring ephemeral, Gagea lutea, and a forest summergreen forb, Maianthemum dilatatum. The plants were grown at day/night temperatures of 25/20°C and 15/10°C after a chilling treatment for variable periods at 2°C. The temperature regime of 25/20°C was much higher than the mean air temperatures for both species in their native habitats. Warm temperature of 25/20°C and/or long chilling treatment shortened leaf longevity in G. lutea, but not in M. dilatatum. The response of G. lutea was consistent with that reported for other spring ephemerals. Air temperature increases as the vegetative season progresses. The decrease in leaf longevity in G. lutea under warm temperature condition ensures leaf senescence in summer, an unfavorable season for its growth. This also implies that early leaf senescence could occur in years with early summers. Warm spring temperatures have been shown to accelerate the leafing-out of forest trees. The decrease in leaf longevity due to warm temperature helps synchronize the period of leaf senescence roughly with the time of the forest canopy leaf-out. Prolonged winter due to late snowmelt has been shown to shorten the vegetative period for spring ephemerals. The decrease in leaf longevity due to long chilling treatment would correspond with this shortened vegetative period.  相似文献   

2.
I examined the effects of growth temperature and winter duration on the leaf phenology of Fauria crista-galli plants, which have an indeterminate growth habit. After a 220-day chilling treatment, the leaf expansion and green periods of plants maintained at 25/20°C were much longer than those of plants maintained at 15/10°C and of plants at the natural habitat obtained in a previous study. The results indicate that early growth cessation and early leaf senescence in the natural habitat are not only due to endogenous rhythm but determined to some extent by cool summer temperatures. When grown at 15/10°C, the green period of individual leaves and plants was much shorter after a long chilling treatment (220 days) than after a short chilling treatment (110 days). The plants sprouted during or immediately after the termination of chilling treatment, suggesting that the decrease in the green period results partly from an advance of endogenous developmental stages during the chilling treatment and that the timing of snowmelt potentially affects the time of leaf senescence in the natural habitat.  相似文献   

3.
The seasonal changes in leaf emergence and leaf-fall in a Japanese alder stand of the fen in Kushiro Marsh were studied, and survival curves for the leaves were drawn. Leaves collected in litter traps were dried and weighed to study the seasonal changes, peaks in mid-August and late September to October suggested a bimodal annual curve. Study of the seasonal changes in the number of emerged and fallen leaves per shoot revealed a third peak about one month before the August peak, showing a trimodal annual curve. First and second leaves had a longevity of about 40 and 50–60 days, respectively. The longevity increased until the fifth leaf. With the sixth and following leaves, longevity decreased. Leaf size increased with leaf rank, with the first leaf being the smallest. The first leaf had only about 10% and the second leaf only 20% of the area of the fifth leaf. On this basis, the early to mid-July peak in number of fallen leaves was composed of first and second leaves which were smaller and short-lived. The early August and September/October peaks were high in both number and mass of fallen leaves. Compared to reports on Japanese alder of other mountainous districts in Hokkaido, the alder trees of Kushiro Marsh had about the same number of leaves per shoot, but had a season of leaf emergence which was about 6 weeks shorter. In addition, the longevity of the longest-lived fifth leaf was about 30–40 days shorter. The short life span of the leaves could be considered as an adaptive strategy of this species to environmental constraints of its habitat.  相似文献   

4.
Several North American broad-leaved tree species range from the northern United States at 47°N to moist tropical montane forests in Mexico and Central America at 15–20°N. Along this gradient the average minimum temperatures of the coldest month (T Jan), which characterize annual variation in temperature, increase from –10 to 12°C and tree phenology changes from deciduous to leaf-exchanging or evergreen in the southern range with a year-long growing season. Between 30 and 45°N, the time of bud break is highly correlated with T Jan and bud break can be reliably predicted for the week in which mean minimum temperature rises to 7°C. Temperature-dependent deciduous phenology—and hence the validity of temperature-driven phenology models—terminates in southern North America near 30°N, where T Jan>7°C enables growth of tropical trees and cultivation of frost-sensitive citrus fruits. In tropical climates most temperate broad-leaved species exchange old for new leaves within a few weeks in January-February, i.e., their phenology becomes similar to that of tropical leaf-exchanging species. Leaf buds of the southern ecotypes of these temperate species are therefore not winter-dormant and have no chilling requirement. As in many tropical trees, bud break of Celtis, Quercus and Fagus growing in warm climates is induced in early spring by increasing daylength. In tropical climates vegetative phenology is determined mainly by leaf longevity, seasonal variation in water stress and day length. As water stress during the dry season varies widely with soil water storage, climate-driven models cannot predict tree phenology in the tropics and tropical tree phenology does not constitute a useful indicator of global warming.  相似文献   

5.
The cabbage butterfly, Pieris melete hibernates and aestivates as a diapausing pupa. We present evidence that the optimum of low temperature and optimal chilling periods for both summer and winter diapause development are based on a similar mechanism. Summer or winter diapausing pupae were exposed to different low temperatures of 1, 5, 10 or 15°C for different chilling periods (ranging from 30 to 120 d) or chilling treatments started at different stages of diapause, and were then transferred to 20°C, LD12.5∶11.5 to terminate diapause. Chilling temperature and duration had a significant effect on the development of aestivating and hibernating pupae. The durations of diapause for both aestivating and hibernating pupae were significantly shorter when they were exposed to low temperatures of 1, 5 or 10°C for 50 or 60 days, suggesting that the optimum chilling temperatures for diapause development were between 1 and 10°C and the required optimal chilling period was about 50–60 days. Eighty days of chilling was efficient for the completion of both summer and winter diapause. When chilling periods were ≥90 days, the durations of summer and winter diapause were significantly lengthened; however, the adult emergence was more synchronous. The adaptive significance of a similar mechanism on summer and winter diapause development is discussed.  相似文献   

6.
W. Wipking 《Oecologia》1995,102(2):202-210
The onset of larval diapause in the burnet moth Zygaena trifolii is clearly characterized by the larva molting into a specialized dormant morph. In a potentially bivoltine Mediterranean population (Marseille) two types of diapause can occur within 1 year: firstly, a facultative summer diapause of 3–10 weeks, and secondly, an obligate winter diapause, which can be lengthened by a period of thermal quiescence to several months in temperatures of 5°C. For the first time, three successive physiological periods have been experimentally distinguished within an insect dormancy (between onset of diapause and molting to the next non-diapause stage), using chilling periods of 30–180 days at 5°C, and varying conditions of photoperiod and temperature. These stages are: (1) a continuous Diapause-ending process (DEP); (2) thermal quiescence (Q); and finally, (3) a period of postdiapause development (PDD) before molting to the next larval instar. The result of transferring dormant larvae from chilling at 5°C to 20°C depended on the length of the chilling period. After chilling for 120–180 days, molting to the next instar occurred after 6–10 days, independent of daylength. This period corresponds with the duration of PDD. After shorter chilling periods (90, 60, 30 days and the control, 0 days) the period to eclosion increased exponentially, and included both the latter part of the previous diapause process and the 6–10 day period of PDD. However, photoperiod also influences the time to eclosion after chilling. Short daylength (8 h light / 16 h dark: LD 8/16) lengthened the diapause in comparison to long daylength (16 h light / 8 h dark: LD 16/8). Short daylength had a similar effect during chilling at 5°C, as measured by the longer time to eclosion after transfer. The shorter time to eclosion resulting from longer chilling periods (30–90 days) demonstrates that the state of diapause is continuously shortened at 5°C, and corresponds to the neuroendocrine controlled DEP. Presumably the DEP has already started after the onset of diapause. When chilling was continued after the end of the DEP, which ranged between 90 and 120 days, thermal quiescence (Q) followed (observed maximum 395 days). Different photoperiodic conditions during the pre-diapause inductive period modified diapause intensity (measured as the duration of diapause), in that a photoperiodic signal just below the critical photoperiod for diapause induction (LD 15/9) intensified diapause. Experiments simulating the summer diapause showed that PDD occurred in the range of 10–25°C. Higher temperatures (15 and 20°C) shortened the DEP at LD 16/8, so that at 20°C many individuals had already terminated diapause after 10–40 days and had molted after the 6–10 days of PDD. A temperature of 25°C unexpectedly lengthened the DEP to 110 days in several individuals. The ecological consequences and the adaptive significance of variation in the duration of the diapause are discussed in relation to the persistence of local populations predictably variable and rare climatic extremes throughout the year.  相似文献   

7.
In this study we have examined the responses ofHevea plants to low temperatures in growth chambers simulating winter conditions in the tropics. The low temperatures increased the leaf diffusive resistance even with a rise in the leaf temperatures toward the end of day. The total chlorophyll levels were reduced by chilling, with no changes in the chlorophyll a/b ratio. Neither organic solute nor electrolyte leakage were observed at low temperatures. These results explain the low growth rate of plants and the lack of serious chilling symptoms (necrosis) in mature leaves during winter conditions near latitude 22° S in Brazil.  相似文献   

8.
The diapause-averting effect of low temperature on pre-diapause larvae was examined in the yellow-spotted longicorn beetle, Psacothea hilaris. Larvae that had been reared under diapause-inducing conditions (25 °C , L12:D12) were temporarily exposed to 10 °C for various periods, and returned to the initial condition. Diapause was not averted by chilling for 15 days irrespective of the age of the larvae at chilling. After a 30-day chilling treatment, all of the 40- and 60-day-old larvae averted diapause, while diapause was averted in only one-third of the 10- and 20-day-old larvae. None of the pre-diapause larvae chilled for 60 days entered diapause irrespective of the age at chilling. With diapause avoidance, larvae that overwintered in earlier instars can start growing in earliest spring without any arrest; this phenomenon probably subserves the synchronization of larval development in a population.  相似文献   

9.
In order to demonstrate in detail the relationship between the longevity and productivity of leaves within a canopy, a new life table approach, the ‘bioeconomic life table’, was applied to the leaves of kidney bean plants (Phaseolus vulgaris L.) in relation to planting density and their position within the canopy. The net photosynthetic rate for upper leaves under full daylight tended to decline gradually due to leaf senescence from about 20 days after leaf emergence, and for the lower leaves the decrease was very rapid due to both shading and senescence about 10 days after emergence. Analysis of the survivorship curves and daily surplus production of leaves suggested that the lower and middle leaves, especially the latter, survived without surplus production of dry matter after they had reached mean longevity, and while the upper leaves at high density had a much shorter mean longevity, they had very large values of daily surplus production throughout the survival period. For the total foliage, the summed value of accumulated surplus production during the survival period was about five times as large as the summed value of the dry weight of the dead leaves, regardless of planting density. The daily rate of canopy leaf respiration was almost proportional to that of canopy gross photosynthesis for the various leaf area indices of the canopy, so that there was no optimum leaf area index that maximized canopy daily surplus production.  相似文献   

10.
Pachypodium namaquanum (Nyley ex Harb.) Welw., an unusual arborescent stem succulent from the succulent karoo of the arid Richtersveld in north-western South Africa and adjacent Namibia, is characterized by a striking curvature of the terminal 20–60 cm of the trunk toward the north. This orientation displays the single terminal whorl of drought-deciduous leaves with their flat surface angled at a mean inclination of 55° from horizontal. Inclination of 50–60° was found in 65% of individuals sampled, and 85% were inclined between 45 and 65°. Northward azimuth was also quite regular, but varied slightly between populations. The fixed leaf orientation in P. namaquanum maximizes radiation absorption during the winter months when leaves are present. Leaves normally form in early fall (April) and abscise early in spring (October). Growing season conditions in the Richtersveld are relatively mild, with mean maximum temperature dropping only to 21.6°C in July, the coldest month of the year. Frosts are rare. By the fixed orientation of its leaf whorl, P. namaquanum is able to maintain nearly twice the midwinter radiation absorptance that it would have with horizontal orientation. Over an annual cycle the angled leaves receive more radiation than would horizontal leaves for each of the 6 months in which they are present on the plant. This increased winter irradiance is hypothesized to singificantly increase net primary production by concentrating growth activities in winter months and allowing the species to remain dormant during the hyperarid conditions of the hot summer months. Midwinter flowering from apical buds in P. namaquanum may also be aided by its stem orientation. The evolution of this characteristic pattern of winter growth phenology and nodding stem orientation may have come about because of low but relatively regular autumn precipitation and moderate winter temperatures. Slow and regular growth of P. namaquanum leads to long lifespans which may reach 300 years or more.  相似文献   

11.
Constraints of temperature on spring plant phenology are closely related to plant growth, vegetation dynamics, and ecosystem carbon cycle. However, the effects of temperature on leaf onset, especially for winter chilling, are still not well understood. Using long‐term, widespread in situ phenology observations collected over China for multiple plant species, this study analyzes the quantitative response of leaf onset to temperature, and compares empirical findings with existing theories and modeling approaches, as implemented in 18 phenology algorithms. Results show that the growing degree days (GDD) required for leaf onset vary distinctly among plant species and geographical locations as well as at organizational levels (species and community), pointing to diverse adaptation strategies. Chilling durations (CHD) needed for releasing bud dormancy decline monotonously from cold to warm areas with very limited interspecies variations. Results also reveal that winter chilling is a crucial component of phenology models, and its effect is better captured with an index that accounts for the inhomogeneous effectiveness of low temperature to chilling rate than with the conventional CHD index. The impact of spring warming on leaf onset is nonlinear, better represented by a logistical function of temperature than by the linear function currently implemented in biosphere models. The optimized base temperatures for thermal accumulation and the optimal chilling temperatures are species‐dependent and average at 6.9 and 0.2°C, respectively. Overall, plants’ chilling requirement is not a constant, and more chilling generally results in less requirement of thermal accumulation for leaf onset. Our results clearly demonstrate multiple deficiencies of the parameters (e.g., base temperature) and algorithms (e.g., method for calculating GDD) in conventional phenology models to represent leaf onset. Therefore, this study not only advances our mechanistic and quantitative understanding of temperature controls on leaf onset but also provides critical information for improving existing phenology models.  相似文献   

12.
A device is described for measuring linear extension of grass leaves during controlled cooling and heating of the growing region. The instrument was employed to investigate the sensitivity to temperature of the expanding third and fourth leaves of Lolium temulentum L. seedlings. Using a stepped temperature profile it was established that there was no lag in the response of growth rate to rapid changes in temperature below 16°C. If cooling was continued to the point where growth ceased (1°C) but no further, then rates of growth on rewarming were enhanced over the chilling range and reverted to the original rate at 20°C. Cooling to successively lower subzero temperatures before rewarming abolished the hysteretic enhancement, progressively raised the temperature at which growth resumed and decreased the rate of extension until, at-5.3°C, no recovery occurred. The temperature sensitivity of growth, measured as Q10, was essentially constant when cooling from 20°C to 5°C, with 5°C-grown leaf tissue exhibiting a higher mean Q10 than tissue developed at 20°C. The possible physiological significance of these data is discussed.Abbreviations LVDT linear variable displacement transformer - Pe, Fx temperatures at which growth ceases during cooling and resumes during rewarming  相似文献   

13.
Du  Yu-Chun  Nose  Akihiro 《Photosynthetica》2002,40(3):389-395
The effects of short-term exposure to chilling temperature (10 °C) on sucrose synthesis in leaves of the cold-tolerant sugarcane cultivars Saccharum sinense R. cv. Yomitanzan and Saccharum sp. cv. NiF4, and the cold-sensitive cultivar S. officinarum L. cv. Badila were studied. Plants were grown at day/night temperatures of 30/25 °C, and then shifted to a constant day/night temperature of 10 °C. After 52-h exposure to the chilling temperature, sucrose content in the leaves of NiF4 and Yomitanzan showed a 2.5- to 3.5-fold increase relative to that of the control plants that had been left on day/night temperatures of 30/25 °C. No such increase was observed in Badila leaves. Similarly, starch content in the leaves of NiF4 and Yomitanzan was maintained high, but starch was depleted in Badila leaves after the 52-h exposure. During the chilling temperature, sucrose phosphate synthase (SPS; E.C.2.4.1.14) activity was relatively stable in the leaves of NiF4 and Yomitanzan, whereas in Badila leaves SPS activity significantly decreased. There was no significant change in cytosolic fructose-1,6-bisphosphatase activity for the three cultivars at the chilling temperature. This supports the hypothesis that: (1) on exposure to chilling temperature, sucrose content in sugarcane leaves is determined by the photosynthetic rate in the leaves, and is not related to SPS activity; (2) SPS activity in sugarcane leaves at chilling temperature is to be determined by sugar concentration in the leaves.  相似文献   

14.
The effects of salicylic acid (SA) (0.01, 0.1 and 1 mM) and cold on freezing tolerance (freezing injury and ice nucleation activity) were investigated in winter wheat (Triticum aestivum cv. Dogu-88) grown under control (20/18 °C for 15, 30 and 45-day) and cold (15/10 °C for 15-day, 10/5 °C for 30-day and 5/3 °C for 45-day) conditions. Cold acclimatisation caused a decrease of injury to leaf segments removed from the plants and subjected to freezing conditions. Exogenous SA also decreased freezing injury in the leaves grown under cold (15/10 °C) and control (15 and 30-day) conditions. Cold conditions (10/5 and 5/3 °C) caused an increase in ice nucleation activity by apoplastic proteins, which were isolated from the leaves. For the first time, it was shown that exogenous SA caused an increase in ice nucleation activity under cold (15/10 and 10/5 °C) and control conditions. These results show that salicylic acid can increase freezing tolerance in winter wheat leaves by affecting apoplastic proteins.  相似文献   

15.
Effect of abscisic acid on chilling injury of zucchini squash   总被引:3,自引:0,他引:3  
The endogenous levels of abscisic acid (ABA) in zucchini squash were increased by temperature conditioning at 10°C for 2 days. This temperature conditioning treatment reduced the severity of chilling injury in the squash during subsequent storage at 2.5°C. The ABA levels remained higher in treated squash than in untreated samples throughout the storage. Direct treatments of squash with ABA at 0.5 and 1.0 mM before storage at 2.5°C increased ABA levels in the tissue and were also effective in reducing chilling injury.  相似文献   

16.
We investigated the effects of brushing on the chilling tolerance and metabolism of nonstructural carbohydrates (soluble sugars and starch) in tomato leaves before, during and after a chilling stress. Tomato plants ( Lycopersicon esculentum Mill. cv. Caruso) were cultivated either without mechanical stress application (control plants) or with daily brushing treatments for 15 days (brushed plants), prior to a 7-day chilling treatment (8/5°C day/night). Brushing resulted in shorter plants with a 34% reduction in leaf dry weight per area and a 59% reduction of soluble sugars and starch, on a dry weight basis. The sugar to starch ratio was not affected by brushing. A greater chilling tolerance in the brushed plants was demonstrated by the maintenance of a significantly higher PSII efficiency in brushed plants (42%) compared to that of the control plants (30%) after 7 days of chilling treatment, less visible damage to the leaf tissue, and a more rapid resumption of growth during 3 days of recovery as compared to control plants. During the chilling treatment levels of soluble sugars per leaf dry weight increased 15-fold in the brushed plants and 5-fold in control plants. In the present study we have demonstrated that brushing can increase chilling tolerance in tomato plants. The observed differences in chilling tolerance and concentration of soluble sugars in the leaves may indicate an involvement of soluble sugar levels in acclimation to chilling.  相似文献   

17.
The effect of chilling on photosystem II (PSII) efficiency was studied in the variegated leaves of Calathea makoyana, in order to gain insight into the causes of chilling-induced photoinhibition. Additionally, a relationship was revealed between (chilling) stress and variation in photosynthesis. Chilling treatments (5 degrees C and 10 degrees C) were performed for different durations (1-7 d) under a moderate irradiance (120 micromol m-2 s-1). The individual leaves were divided into a shaded zone and two illuminated, chilled zones. The leaf tip and sometimes the leaf base were not chilled. Measurements of the dark-adapted Fv/Fm were made on the different leaf zones at the end of the chilling treatment, and then for several days thereafter to monitor recovery. Chilling up to 7 d in the dark did not affect PSII efficiency and visual appearance, whereas chilling in the light caused severe photoinhibition, sometimes followed by leaf necrosis. Photoinhibition increased with the duration of the chilling period, whereas, remarkably, chilling temperature had no effect. In the unchilled leaf tip, photoinhibition also occurred, whereas in the unchilled leaf base it did not. Whatever the leaf zone, photoinhibition became permanent if the mean value dropped below 0.4, although chlorosis and necrosis were associated solely with chilled illuminated tissue. Starch accumulated in the unchilled leaf tip, in contrast to the adjacent chilled irradiated zone. This suggests that photoinhibition was due to a secondary effect in the unchilled leaf tip (sink limitation), whereas it was a direct effect of chilling and irradiance in the chilled illuminated zones. The PSII efficiency and its coefficient of variation showed a unique negative linearity across all leaf zones and different tissue types. The slope of this curve was steeper for chilled leaves than it was for healthy, non-stressed leaves, suggesting that the coefficient of variation may be an important tool for assessing stress in leaves.  相似文献   

18.
Response to chilling of tomato mesophyll protoplasts   总被引:2,自引:0,他引:2  
Freshly isolated protoplasts from tomato leaves show two completely different responses to a chilling treatment of 12 h at 7° C prior to culture at 29° C, depending on the presence or absence of glucose in the medium. In the culture medium with glucose as osmoticum, where the rate of cell divisions under optimal culture conditions is relatively high (about 20% plating efficiency), protoplasts were drastically injured by the chilling procedure and died. In the medium with mannitol as the osmoticum instead of glucose, where the plating efficiency even under optimal conditions is rather low (about 8%), protoplasts withstand the chilling procedure. More-over, after the chilling treatment when the protoplasts were transferred to the optimal culture temperature of 29° C, the plating efficiency was raised to about 20%, which is the same level as in the glucose-containing medium without chilling. This effect was not observed when the medium in which the protoplasts were suspended during the chilling period was replaced with fresh medium. This suggests that under these conditions tomato protoplasts produce and excrete a factor in the cold that improves the vitality of the cells or stimulates cell division. The possible relationship between chilling sensitivity of tomato protoplasts and their ability to divide will be discussed.  相似文献   

19.
P. S. Karlsson 《Oecologia》1992,91(3):346-349
Summary Leaf longevities were determined for 16 species of evergreen shurbs (Ericaceae and Empetraceae) at different habitats at three latitudes (c. 47°, 55–58° and 68°N) in central and north Europe to determine whether any general trends exist in variation in leaf longevity within and among species. Among these species and sites, mean leaf longevity varied between 1.4 and 3.8 seasons, which is similar to the values reported for other evergreen shrubs, but shorter than for many evergreen conifers. Consistent differences in leaf longevity were found when comparing latitudes (ignoring altitude and habitat type): longevities were longer at 68°N than at the two lower latitudes. No consistent trends were found among species within altitudes.  相似文献   

20.
Summary The prairie compass plant (Silphium laciniatum L.) has vertical leaves that are characteristically oriented in a north-south plane (i.e., the flat surfaces of the lamina face east and west). We explored the consequences of this orientation by determining basic photosynthetic and water use characteristics in response to environmental factors and by determining total daily photosynthesis and water use of leaves held in different orientations. Average maximum CO2 exchange rate (CER) of leaves near Ames, IA was constant at 22 micromol m–2 s–1 from May through August and then declined. CER did not exhibit a distinct lightsaturation point. CER at photon flux densities near full sunlight was constant from 22 to 35°C leaf temperature but declined at higher temperatures. However, leaf temperatures rarely exceed 35°C during the growing season. There was no change in the pattern of response of CER to temperature over the growing season. We constrained leaves to face east-west (EW,=natural), to face north-south (NS), or to be horizontal (HOR) on eight days in 1986–1988. EW leaves had the highest light interception, leaf temperatures, CER, and transpiration early and late in the day, whereas HOR leaves had the highest values in the middle of the day. Integrations of CER and transpiration over the eight daytime periods showed EW and HOR leaves to have equivalent carbon gain, higher than that of NS leaves. HOR leaves had the highest daily transpiration. Daily water use efficiency (WUE, carbon gained/water lost) was always highest in EW leaves, with the HOR leaves having 16% lower WUE and NS leaves having 33% lower WUE. The natural orientation of compass plant leaves results in equivalent or higher carbon gain and in increased WUE when compared to leaves with other possible orientations; this is likely to have a selective advantage in a prairie environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号