首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
Plant expression signals of the Agrobacterium T-cyt gene.   总被引:6,自引:1,他引:5       下载免费PDF全文
Within the 5' and 3' non-coding regions of the T-cyt gene from the octopine T-DNA of Agrobacterium tumefaciens sequences required for expression of this gene in plant cells were identified by deletion mutagenesis. The results show that 184 bp of the 5' non-coding region and 270 bp of the 3' non-coding region are sufficient for wild-type expression. Within the 5' non-coding region two essential expression signals were identified: (1.) an activator element located between -185 and -129 with respect to the ATG start codon and (2.) one out of two TATA boxes. Deletions of the activator element or the two TATA boxes resulted in nonfunctional genes. Deletion of the upstream TATA box and both putative CAAT boxes did not significantly affect expression. Within the 3' non-coding region, the polyadenylation box most distal to the stop codon was not essential for expression, but sequences more upstream, including a second polyadenylation box were found to be required for wild-type expression.  相似文献   

4.
5.
Signals necessary for in vivo expression of Ti plasmid T-DNA-encoded octopine and nopaline synthase genes were studied in crown gall tumors by constructing mutated genes carrying various lengths of sequences upstream of the 5' initiation site of their mRNAs. Deletions upstream of position -294 did not interfere with expression of the octopine synthase gene while those extending upstream of position -170 greatly reduced the gene expression. The estimated size of the octopine synthase promoter is therefore 295 bp. The maximal length of 5' upstream sequences involved in the in vivo expression of the nopaline synthase gene is 261 bp. Our results also demonstrated that Ti plasmid-derived sequences contain all signals essential for expression of opine synthase genes in plants. Expression of these genes, therefore, is independent of the direct vicinity of the plant DNA sequences and is not activated by formation of plant DNA and T-DNA border junction.  相似文献   

6.
M Fitzgerald  T Shenk 《Cell》1981,24(1):251-260
We have observed three effects of deletion mutations on polyadenylation of late SV40 mRNAs. The first class of mutants lack segments (-3 to -14 bp) between the 5-AAUAAA-3' and normal poly(A) site. These mutants produce mRNas polyadenylated at new sites, downstream from the wild-type site. The poly(A) site is moved farther downstream as the deletions become larger; as a result, polyadenylation always occurs within an 11-19 nucleotide range from the AAUAAA sequence. The second class of mutants lack segments (-12 to -30 bp) between the AAUAAA sequence and the coding region of the mRNA. The poly(A) site for only one of these mutants was studied (dl1457, -12 bp). In this case, the spatial relationship between AAUAAA and poly(A) site is altered. dl1457 produces a class of mRNAs polyadenylated at the first Ca following the AAUAAA sequence, as well as other mRNAs polyadenylated farther downstream. Finally, a 16 bp deletion that includes the AAUAAA sequence prevents poly(A) addition.  相似文献   

7.
A series of deletions in the SV40 late polyadenylation region was assayed by transient expression in a hamster fibroblast cell line. Because of differences in expression data between our results and the published results of another laboratory using a similar set of deletions introduced into a monkey kidney cell line, we studied our deletions in cells of different tissue-types and species (1). Deletion of the SV40 late polyadenylation region to 49 nucleotides downstream of the hexanucleotide AATAAA showed a small effect on gene expression, while further truncation of the region to 6 nucleotides downstream of the AATAAA showed an 85% drop in marker enzyme activity, protein levels and steady-state message levels. Another deletion in the same region, from base pair 10 to 15 past the AATAAA, which removes the wild-type site of RNA cleavage, showed a 50% drop in marker gene expression. The effects of these mutants on gene expression were similar in all of the cell lines tested and agree with other studies that DNA downstream of the AATAAA plays a role in efficient gene expression.  相似文献   

8.
Summary Deletions were made in the cauliflower mosaic virus polyadenylation sequence which was cloned downstream of the -glucuronidase gene (gus). The populations of mRNAs generated in tobacco mesophyll protoplasts by transient expression with the various constructs were analysed using a polymerase chain reaction procedure. When no deletion was present in the sequence, the mRNA appeared to be polyadenylated at two major polyadenylation sites. A deletion upstream from the AATAAA sequence made the population of polyadenylated mRNAs very heterogenous at their 3 ends. A deletion downstream of the AATAAA sequence had no effect on the choice of the site. Alternative polyadenylation sites were used when the native polyadenylation site was deleted. These results are discussed in relation to data obtained with other polyadenylation sequences from both plants and animals.  相似文献   

9.
10.
11.
12.
In addition to the highly conserved AATAAA sequence, there is a requirement for specific sequences downstream of polyadenylic acid [poly(A)] cleavage sites to generate correct mRNA 3' termini. Previous experiments demonstrated that 35 nucleotides downstream of the E2A poly(A) site were sufficient but 20 nucleotides were not. The construction and assay of bidirectional deletion mutants in the adenovirus E2A poly(A) site indicates that there may be redundant multiple sequence elements that affect poly(A) site usage. Sequences between the poly(A) site and 31 nucleotides downstream were not essential for efficient cleavage. Further deletion downstream (3' to +31) abolished efficient cleavage in certain constructions but not all. Between +20 and +38 the sequence T(A/G)TTTTT was duplicated. Function was retained when one copy of the sequence was present, suggesting that this sequence represents an essential element. There may also be additional sequences distal to +43 that can function. To establish common features of poly(A) sites, we also analyzed the early simian virus 40 (SV40) poly(A) site for essential sequences. An SV40 poly(A) site deletion that retained 18 nucleotides downstream of the cleavage site was fully functional while one that retained 5 nucleotides downstream was not, thus defining sequences required for cleavage. Comparison of the SV40 sequences with those from E2A did not reveal significant homologies. Nevertheless, normal cleavage and polyadenylation could be restored at the early SV40 poly(A) site by the addition of downstream sequences from the adenovirus E2A poly(A) site to the SV40 +5 mutant. The same sequences that were required in the E2A site for efficient cleavage also restored activity to the SV40 poly(A) site.  相似文献   

13.
14.
15.
16.
17.
Conserved 12-bp element downstream from mRNA polyadenylation sites   总被引:7,自引:0,他引:7  
Michael J. Renan   《Gene》1987,60(2-3):245-254
  相似文献   

18.
The great majority of viral mRNAs in mouse C127 cells transformed by bovine papillomavirus type 1 (BPV) have a common 3' end at the early polyadenylation site which is 23 nucleotides (nt) downstream of a canonical poly(A) consensus signal. Twenty percent of BPV mRNA from productively infected cells bypasses the early polyadenylation site and uses the late polyadenylation site approximately 3,000 nt downstream. To inactivate the BPV early polyadenylation site, the early poly(A) consensus signal was mutated from AAUAAA to UGUAAA. Surprisingly, this mutation did not result in significant read-through expression of downstream RNA. Rather, RNA mapping and cDNA cloning experiments demonstrate that virtually all of the mutant RNA is cleaved and polyadenylated at heterogeneous sites approximately 100 nt upstream of the wild-type early polyadenylation site. In addition, cells transformed by wild-type BPV harbor a small population of mRNAs with 3' ends located in this upstream region. These experiments demonstrate that inactivation of the major poly(A) signal induces preferential use of otherwise very minor upstream poly(A) sites. Mutational analysis suggests that polyadenylation at the minor sites is controlled, at least in part, by UAUAUA, an unusual variant of the poly(A) consensus signal approximately 25 nt upstream of the minor polyadenylation sites. These experiments indicate that inactivation of the major early polyadenylation signal is not sufficient to induce expression of the BPV late genes in transformed mouse cells.  相似文献   

19.
Cleavage and polyadenylation of eukaryotic mRNA requires efficiency and positioning elements in the 3'-untranslated region (3'-UTR) of the mRNA. Specific point mutations were introduced into the yeast GCN4 3'-UTR to detect sequence motifs which are involved in the positioning of the poly(A) site. 3'-End proces-sing activities of different GCN4 3'-UTR alleles were measured in an in vivo test system. Point mutations in an AAGAA motif defocussed selection of the poly(A) sites of the GCN4 3'-UTR to various additional poly(A) sites instead of the single site of the wild-type GCN4 3'-UTR. A strain with an intact wild-type GCN4 3'-UTR but impaired in RNA15 encoding an RNA-binding processing factor showed a similar defocussed pattern of poly(A) site selection. Remarkably, two additional sequence motifs upstream of the AAGAA motif which resemble yeast efficiency motifs independently affected poly(A) site positioning but not efficiency of 3'-end processing. Mutations in one motif resulted in an additional upstream poly(A) site. Alterations of the other motif shifted the poly(A) sites exclusively to two downstream poly(A) sites. These data suggest several contact points between the precursor mRNA and the polyadenylation machinery in yeast.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号