首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to understand the steps controlling the biotransformation of trimethylammonium compounds into L(-)-carnitine by Escherichia coli. The high-cell density reactor steady-state levels of carbon source (glycerol), biotransformation substrate (crotonobetaine), acetate (anaerobiosis product) and fumarate (as an electron acceptor) were pulsed by increasing them fivefold. Following the pulse, the evolution of the enzyme activities involved in the biotransformation process of crotonobetaine into L(-)-carnitine (crotonobetaine hydration), in the synthesis of acetyl-CoA (ACS: acetyl-CoA synthetase and PTA: ATP: acetate phosphotransferase) and in the distribution of metabolites for the tricarboxylic acid (ICDH: isocitrate dehydrogenase) and glyoxylate (ICL: isocitrate lyase) cycles was monitored. In addition, the levels of carnitine, the cell ATP content and the NADH/NAD(+) ratio were measured in order to assess the importance and participation of these energetic coenzymes in the catabolic system. The results provided an experimental demonstration of the important role of the glyoxylate shunt during biotransformation and the need for high levels of ATP to maintain metabolite transport and biotransformation. Moreover, the results obtained for the NADH/NAD(+) pool indicated that it is correlated with the biotransformation process at the NAD(+) regeneration and ATP production level in anaerobiosis. More importantly, a linear correlation between the NADH/NAD(+) ratio and the levels of the ICDH and ICL (carbon and electron flows) and the PTA and ACS (acetate and ATP production and acetyl-CoA synthesis) activity levels was assessed. The main metabolic pathway operating during cell metabolic perturbation with a pulse of glycerol and acetate in the high-cell density membrane reactor was that related to ICDH and ICL, both regulating the carbon metabolism, together with PTA and ACS enzymes (regulating ATP production).  相似文献   

2.
The aim was to understand how interaction of the central carbon and the secondary carnitine metabolisms is affected under salt stress and its effect on the production of L-carnitine by Escherichia coli. The biotransformation of crotonobetaine into L-carnitine by resting cells of E. coli O44 K74 was improved by salt stress, a yield of nearly twofold that for the control being obtained with 0.5 M NaCl. Crotonobetaine and the L-carnitine formed acted as an osmoprotectant during cell growth and biotransformation in the presence of NaCl. The enzyme activities involved in the biotransformation process (crotonobetaine hydration reaction and crotonobetaine reduction reaction), in the synthesis of acetyl-CoA/acetate (pyruvate dehydrogenase, acetyl-CoA synthetase [ACS] and ATP/acetate phosphotransferase) and in the distribution of metabolites for the tricarboxylic acid cycle (isocitrate dehydrogenase [ICDH]) and glyoxylate shunt (isocitrate lyase [ICL]) were followed in batch with resting cells both in the presence and absence of NaCl and in perturbation experiments performed on growing cells in a high density cell recycle membrane reactor. Further, the levels of carnitine, crotonobetaine, gamma-butyrobetaine and ATP and the NADH/NAD(+) ratio were measured in order to know how the metabolic state was modified and coenzyme pools redistributed as a result of NaCl's effect on the energy content of the cell. The results provided the first experimental evidence of the important role played by salt stress during resting and growing cell biotransformation (0.5 M NaCl increased the L-carnitine production in nearly 85%), and the need for high levels of ATP to maintain metabolite transport and biotransformation. Moreover, the main metabolic pathways and carbon flow operating during cell biotransformation was that controlled by the ICDH/ICL ratio, which decreased from 8.0 to 2.5, and the phosphotransferase/ACS ratio, which increased from 2.1 to 5.2, after a NaCl pulse fivefold the steady-state level. Resting E. coli cells were seen to be made up of heterogeneous populations consisting of several types of subpopulation (intact, depolarized, and permeabilized cells) differing in viability and metabolic activity as biotransformation run-time and the NaCl concentration increased. The results are discussed in relation with the general stress response of E. coli, which alters the NADH/NAD(+) ratio, ATP content, and central carbon enzyme activities.  相似文献   

3.
Cofactor engineering, defined as the purposeful modification of the pool of intracellular cofactors, has been demonstrated to be a very suitable strategy for the improvement of L(-)-carnitine production in Escherichia coli strains. The overexpression of CaiB (CoA-transferase) and CaiC (CoA-ligase), both enzymes involved in coenzyme A transfer and substrate activation during the bioprocess, led to an increase in L(-)-carnitine production. Under optimal concentrations of inducer and fumarate (used as electron acceptors) yields reached 10- and 50-fold, respectively, that obtained for the wild type strain. However, low levels of coenzyme A limited the activity of these two enzymes since the addition of pantothenate increased production. Growth on substrates whose assimilation yields acetyl-CoA (such as acetate or pyruvate) further inhibited L(-)-carnitine production. Interestingly, control steps in the metabolism of acetyl-CoA of E. coli were detected. The glyoxylate shunt and anaplerotic pathways limit the bioprocess since strains carrying deletions of isocitrate lyase and isocitrate dehydrogenase phosphatase/kinase yielded 20-25% more L(-)-carnitine than the control. On the other hand, the deletion of phosphotransacetylase strongly inhibited the bioprocess, suggesting that an adequate flux of acetyl-CoA and the connection of the phosphoenolpyruvate-glyoxylate cycle together with the acetate metabolism are crucial for the biotransformation.  相似文献   

4.
The L(-)-carnitine production by biotransformation using the recombinant strain Escherichia coli pT7-5KE32 has been studied and optimized with crotonobetaine and D(+)-carnitine as substrates. A resting rather than a growing cells system for L(-)-carnitine production was chosen, crotonobetaine being the best substrate. High biocatalytic activity was obtained after growing the cells under anaerobic conditions at 37°C and with crotonobetaine or L(-)-carnitine as inducer. The growth incubation temperature (37°C) was high enough as to activate the heat-inducible λpL promoter inserted in the plasmid pGP1-2. The best biotransformation conditions were with resting cells, under aerobiosis, with 4 g l−1 and 100 mM biomass and substrate concentrations respectively. Under these conditions the biotransformation time (1 h) was shorter and the L(-)-carnitine yield (70%) higher than previously reported. Consequently productivity value (11.3 g l−1h−1) was highly improved when comparing with other published works. The resting cells could be reused until eight times maintaining product yield levels well over 50% that meant to increase ten times the L(-)-carnitine obtained per gram of biomass.  相似文献   

5.
Aims:  Characterization of the role of CaiC in the biotransformation of trimethylammonium compounds into l (−)-carnitine in Escherichia coli .
Methods and Results:  The caiC gene was cloned and overexpressed in E. coli and its effect on the production of l (−)-carnitine was analysed. Betaine:CoA ligase and CoA transferase activities were analysed in cell free extracts and products were studied by electrospray mass spectrometry (ESI-MS). Substrate specificity of the caiC gene product was high, reflecting the high specialization of the carnitine pathway. Although CoA-transferase activity was also detected in vitro , the main in vivo role of CaiC was found to be the synthesis of betainyl-CoAs. Overexpression of CaiC allowed the biotransformation of crotonobetaine to l (−)-carnitine to be enhanced nearly 20-fold, the yield reaching up to 30% (with growing cells). Higher yields were obtained using resting cells (up to 60%), even when d (+)-carnitine was used as substrate.
Conclusions:  The expression of CaiC is a control step in the biotransformation of trimethylammonium compounds in E. coli .
Significance and Impact of the Study:  A bacterial betaine:CoA ligase has been characterized for the first time, underlining its important role for the production of l -carnitine with Escherichia coli .  相似文献   

6.
The productivity of Escherichia coli as a producer of recombinant proteins is affected by its metabolic properties, especially by acetate production. Two commercially used E. coli strains, BL21 (lambdaDE3) and JM109, differ significantly in their acetate production during batch fermentation at high initial glucose concentrations. E. coli BL21 grows to an optical density (OD, 600 nm) of 100 and produces no more than 2 g/L acetate, while E. coli JM109 grows to an OD (600 nm) of 80 and produces up to 14 g/L acetate. Even in fed-batch fermentation, when glucose concentration is maintained between 0.5 and 1.0 g/L, JM109 accumulates 4 times more acetate than BL21. To investigate the difference between the two strains, metabolites and enzymes involved in carbon utilization and acetate production were analyzed (isocitrate, ATP, phosphoenolpyruvate, pyruvate, isocitrate lyase, and isocitrate dehydrogenase). The results showed that during batch fermentation isocitrate lyase activity and isocitrate concentration were higher in BL21 than in JM109, while pyruvate concentration was higher in JM109. The activation of the glyoxylate shunt pathway at high glucose concentrations is suggested as a possible explanation for the lower acetate accumulation in E. coli BL21. Metabolic flux analysis of the batch cultures supports the activity of the glyoxylate shunt in E. coli BL21.  相似文献   

7.
The amplification of gltA gene encoding citrate synthase of TCA cycle was required for the efficient conversion of acetyl-CoA, generated during vanillin production from ferulic acid, to CoA, which is essential for vanillin production. Vanillin of 1.98 g/L was produced from the E. coli DH5alpha (pTAHEF-gltA) with gltA amplification in 48 h of culture at 3.0 g/L of ferulic acid, which was about twofold higher than the vanillin production of 0.91 g/L obtained by the E. coli DH5alpha (pTAHEF) without gltA amplification. The icdA gene encoding isocitrate dehydrogenase of TCA cycle was deleted to make the vanillin producing E. coli utilize glyoxylate bypass which enables more efficient conversion of acetyl-CoA to CoA in comparison with TCA cycle. The production of vanillin by the icdA null mutant of E. coli BW25113 harboring pTAHEF was enhanced by 2.6 times. The gltA amplification of the glyoxylate bypass in the icdA null mutant remarkably increased the production rate of vanillin with a little increase in the amount of vanillin production. The real synergistic effect of gltA amplification and icdA deletion was observed with use of XAD-2 resin reducing the toxicity of vanillin produced during culture. Vanillin of 5.14 g/L was produced in 24 h of the culture with molar conversion yield of 86.6%, which is the highest so far in vanillin production from ferulic acid using recombinant E. coli.  相似文献   

8.
Acinetobacter calcoaceticus contains two forms of NADP+-dependent isocitrate dehydrogenases differing, among others, by their molecular weights and regulatory properties. The regulation of the high-molecular form of isocitrate dehydrogenase and of isocitrate lyase by organic acids, either belonging or related to the citrate and glyoxalate cycle, is investigated. While alpha-ketoglutarate and oxalacetate competitively inhibit the isocitrate dehydrogenase against Ds-isocitrate, glyoxylate and pyruvate were found to increase Vmax and to lower the KM value for Ds-isocitrate and NADP+. Simultaneous addition of oxalacetate and glyoxylate (not, however, addition of the nonenzymatically formed condensation product of both compound) nullified the activation of isocitrate dehydrogenase by glyoxylate, and potentiates the inhibitory effect of oxalacetate. Alpha-ketoglutarate, succinate, and phosphoenolpyruvate inhibit the isocitrate lyase in a noncompetitive fashion against DS-isocitrate; L-malate, oxalacetate and glyoxylate inhibit competitively. The intermediates of the citrate and glyoxylate cycle afford additive inhibition of the isocitrate lyase. The importance of organic acids of the citrate and glyoxylate cycle and of phosphoenolpyruvate for the regulation of the citrate and glyoxylate cycle at the level of isocitrate dehydrogenase and isocitrate lyase is discussed.  相似文献   

9.
Activities of five enzymes (pyruvate dehydrogenase complex; citrate synthase, EC 4.1.3.7; carnitine acetyltransferase, EC 2.3.1.7; acetyl-CoA synthetase, EC 6.2.1.1; and ATP citrate lyase, EC 4.1.3.8) were determined in cell bodies of anterior horn cells and dorsal root ganglion cells from the rabbit. For comparison, molecular layer, granular layer and white matter from rabbit and mouse cerebella and cerebral cortex and striatum from the mouse were analyzed. Samples (3–85 ng dry weight) were assayed in 180 to 370 ml of assay reagents containing CoASH and other substrates in excess. By using ‘CoA cycling’, the assay systems were devised to amplify and measure small amounts of acetyl-CoA formed during the enzyme reactions. Carnitine acetyltransferase was the most active enzyme in single nerve cell bodies and all layer samples, except for rabbit and mouse cerebellar white matter. Citrate synthetase was the lowest in single cell bodies. The activities of carnitine acetyltransferase and acetyl-CoA synthetase (656 and 89.8 mmoles of acetyl-CoA formed/kg of dry weight/h at 38°C) from dorsal root ganglion cells were about 2-fold higher than those from anterior horn cells. The activity of ATP citrate lyase (134mmol of acetyl-CoA formed/kg of dry weight/h at 38°C) from anterior horn cells was approximately twice that from dorsal root ganglion cells. The activity of this enzyme was distributed in a wider range in anterior horn cells than dorsal root ganglion cells. The second highest activity (80.0 mmol of acetyl-CoA formed/kg of dry weight/h at 38°C) of ATP citrate lyase was found in striatum where cholinergic interneurones are abundant. Relatively higher activities of this enzyme were found in cerebellar granular layer and white matter which are known to contain the cholinergic mossy fibers. These results suggested that cholinergic neurones contain higher activity of ATP citrate lyase which is thought to supply acetyl-CoA to choline acetyltransferase (EC 2.3.1.6) as a substrate to form acetylcholine.  相似文献   

10.
杨超  郝宁  严明  高璐  许琳 《生物工程学报》2013,29(11):1696-1700
谷氨酸棒状杆菌SA001是缺失了乳酸脱氢酶基因 (ldhA) 的菌株。为了增加厌氧条件下经异柠檬酸到丁二酸的代谢通量,以提高丁二酸的产量。将来自大肠杆菌Escherichia coli K12的异柠檬酸裂解酶基因导入谷氨酸棒状杆菌SA001 (SA001/pXMJ19-aceA) 中。该菌经0.8 mmol/L的IPTG有氧诱导12 h后,转入厌氧发酵16 h,丁二酸的产量为10.38 g/L,丁二酸的生产强度为0.83 g/(L·h)。与出发菌株比较,异柠檬酸裂解酶的酶活提高了5.8倍,丁二酸的产量提高了48%。结果表明过量表达异柠檬酸裂解酶可以增加由乙醛酸途径流向丁二酸的代谢流。  相似文献   

11.
Two proteins, component I (CI) and component II (CII), catalyze the biotransformation of crotonobetaine to L(-)-carnitine in Proteus sp. CI was purified to electrophoretic homogeneity from cell-free extracts of Proteus sp. The N-terminal amino acid sequence of CI showed high similarity (80%) to the caiB gene product from Escherichia coli O44K74, which encodes the L(-)-carnitine dehydratase. CI alone was unable to convert crotonobetaine into L(-)-carnitine even in the presence of the cosubstrates crotonobetainyl-CoA or gamma-butyrobetainyl-CoA, which are essential for this biotransformation. The relative molecular mass of CI was determined to be 91.1 kDa. CI is composed of two identical subunits of molecular mass 43.6 kDa. The isoelectric point is 5.0. CII was purified to electrophoretic homogeneity from cell-free extracts of Proteus sp. and its N-terminal amino acid sequence showed high similarity (75%) to the caiD gene product of E. coli O44K74. The relative molecular mass of CII was shown to be 88.0 kDa, and CII is composed of three identical subunits of molecular mass 30.1 kDa. The isoelectric point of CII is 4.9. For the biotransformation of crotonobetaine to L(-)-carnitine, the presence of CI, CII, and a cosubstrate (crotonobetainyl-CoA or gamma-butyrobetainyl-CoA) were shown to be essential.  相似文献   

12.
Cell extracts of Rhodobacter capsulatus grown on acetate contained an apparent malate synthase activity but lacked isocitrate lyase activity. Therefore, R. capsulatus cannot use the glyoxylate cycle for acetate assimilation, and a different pathway must exist. It is shown that the apparent malate synthase activity is due to the combination of a malyl-coenzyme A (CoA) lyase and a malyl-CoA-hydrolyzing enzyme. Malyl-CoA lyase activity was 20-fold up-regulated in acetate-grown cells versus glucose-grown cells. Malyl-CoA lyase was purified 250-fold with a recovery of 6%. The enzyme catalyzed not only the reversible condensation of glyoxylate and acetyl-CoA to L-malyl-CoA but also the reversible condensation of glyoxylate and propionyl-CoA to beta-methylmalyl-CoA. Enzyme activity was stimulated by divalent ions with preference for Mn(2+) and was inhibited by EDTA. The N-terminal amino acid sequence was determined, and a corresponding gene coding for a 34.2-kDa protein was identified and designated mcl1. The native molecular mass of the purified protein was 195 +/- 20 kDa, indicating a homohexameric composition. A homologous mcl1 gene was found in the genomes of the isocitrate lyase-negative bacteria Rhodobacter sphaeroides and Rhodospirillum rubrum in similar genomic environments. For Streptomyces coelicolor and Methylobacterium extorquens, mcl1 homologs are located within gene clusters implicated in acetate metabolism. We therefore propose that L-malyl-CoA/beta-methylmalyl-CoA lyase encoded by mcl1 is involved in acetate assimilation by R. capsulatus and possibly other glyoxylate cycle-negative bacteria.  相似文献   

13.
Enzymes of the tricarboxylic acid (TCA) cycle and glyoxylate pathway were investigated in adults and infective larvae of Ancylostoma ceylanicum and Nippostrongylus brasiliensis, and their activities were compared with those obtained in rat liver. A complete sequence of enzymes of the TCA cycle, with most of them showing activities quite similar to those in the rat liver homogenate, was detected in adults of both species. All the enzymes except fumarase and malate dehydrogenase were located predominantly in mitochondria where they showed a variable distribution of activities between the soluble and the membranes fractions. Malate dehydrogenase and fumarase were found in both the mitochondria and the 9,000-g supernatant fraction. Succinyl CoA synthetase, which was present in minimum activity, appeared rate limiting. Enzymes of the glyoxylate pathway, particularly isocitrate lyase, seemed to aid the functioning of the Krebs cycle by allowing the formation of succinate from isocitrate. The infective larvae of both species also were found equipped with all the enzymes of the Krebs cycle. Nonetheless, only isocitrate lyase of the glyoxylate pathway could be detected in these parasites.  相似文献   

14.
Throughout the development (maturation) of mango fruit the contents of citric and glyoxylic acids increased steadily. As the fruit matured the levels of isocitrate lyase, malate lyase and alanine: glyoxylate aminotransferase increased and reached maximum values prior to the time of harvesting. At and after harvest the levels of malate lyase and alanine : glyoxylate aminotransferase began to decrease but that of isocitrate lyase remained high until after the harvest when it decreased. The level of glyoxylate reductase was highest in the early developmental stage but declined as the fruit matured and ripened. As the fruit ripened, after harvest, the amounts of citric and glyoxylic acids decreased concomitant with a considerable increase in the levels of isocitrate dehydrogenase, malic dehydrogenase, malic enzyme and glyoxylate dehydrogenase.Fatty acid oxidizing capacity of mitochondria isolated from immature (developing) and postclimacteric fruit pulps was much less than that observed with mitochondria from preclimacteric and climacteric fruit. Glyoxylate stimulated the oxidation of caprylic, lauric, myristic and palmitic acids and inhibited the activity of isocitrate dehydrogenase in vitro.  相似文献   

15.
The increasing commercial demand for L-carnitine has led to a multiplication of efforts to improve its production with bacteria. The use of different cell environments, such as growing, resting, permeabilized, dried, osmotically stressed, freely suspended and immobilized cells, to maintain enzymes sufficiently active for L-carnitine production is discussed in the text. The different cell states of enterobacteria, such as Escherichia coli and Proteus sp., which can be used to produce L-carnitine from crotonobetaine or D-carnitine as substrate, are analyzed. Moreover, the combined application of both bioprocess and metabolic engineering has allowed a deeper understanding of the main factors controlling the production process, such as energy depletion and the alteration of the acetyl-CoA/CoA ratio which are coupled to the end of the biotransformation. Furthermore, the profiles of key central metabolic activities such as the TCA cycle, the glyoxylate shunt and the acetate metabolism are seen to be closely interrelated and affect the biotransformation efficiency. Although genetically modified strains have been obtained, new strain improvement strategies are still needed, especially in Escherichia coli as a model organism for molecular biology studies. This review aims to summarize and update the state of the art in L-carnitine production using E. coli and Proteus sp, emphasizing the importance of proper reactor design and operation strategies, together with metabolic engineering aspects and the need for feed-back between wet and in silico work to optimize this biotransformation.  相似文献   

16.
Methylamine metabolism in a pseudomonas species   总被引:16,自引:0,他引:16  
The mechanism by which a nonphotosynthetic bacterium Pseudomonas sp. (Shaw Strain MA) grows on the one-carbon source, methylamine, was investigated by comparing enzyme levels of cells grown on methylamine, to cells grown on acetate or succinate. Cells grown on methylamine have elevated levels of the enzymes serine hydroxymethyl transferase, serine dehydratase, malic enzyme, glycerate dehydrogenase and malate lyase (CoA acetylating ATP-cleaving). These enzymes, in conjunction with a constitutive glyoxylate transaminase, can account for the net conversion of two one-carbon units into acetyl CoA. Cells grown on acetate or methylamine, but not succinate, contain the enzyme isocitrate lyase; while cells grown on acetate or succinate, but not methylamine, contain significant levels of malate synthetase. These findings suggest that the acetyl CoA derived from one-carbon units in methylamine grown cells, condenses with oxalacetate to yield citrate and then isocitrate, followed by cleavage to succinate and glyoxylate. Thus, growth on methylamine is accomplished by the net synthesis of succinate from two molecules of methyamine and two molecules of CO2.  相似文献   

17.
Developmental regulation of energy metabolism in Caenorhabditis elegans   总被引:3,自引:0,他引:3  
Changes in energy metabolism during larval development in Caenorhabditis elegans have been investigated using phosphorus nuclear magnetic resonance (31P NMR). The relative concentrations of ATP, ADP, AMP, sugar phosphates, and other metabolites were observed to change during larval development, producing stage-specific spectra. These spectra are consistent with enzyme assays for isocitrate dehydrogenase and isocitrate lyase, indicating that high activity of the glyoxylate pathway during embryonic development decreases during the first larval (L1) stage, and respiration during the L2, L3, and L4 stages occurs preferentially through the TCA cycle. Metabolic strategies were further studied using mutants that are predisposed to enter the dauer stage, a developmentally arrested third-stage larva formed under conditions of overcrowding and limited food. After the L1 molt, energy metabolism in animals destined to become dauer larvae diverges from that of animals committed to growth. Relative to the L1, the L2 larvae committed to growth exhibit increased isocitrate dehydrogenase activity as well as increases in ATP and other high-energy phosphates, but predauer (L2d) larvae exhibit declining enzyme activities and declining levels of high-energy phosphates. The predominant phosphorus NMR signal in dauer larva extracts corresponds to inorganic phosphate. We conclude that metabolism is regulated during C. elegans larval development, with a major transition apparent after the L1 stage. This transition does not occur in larvae destined to form dauer larvae.  相似文献   

18.
Phosphoenolpyruvate inhibited Escherichia coli NADP-isocitrate dehydrogenase allosterically (Ki of 0.31 mM) and isocitrate lyase uncompetitively (Ki' of 0.893 mM). Phosphoenolpyruvate enhances the uncompetitive inhibition of isocitrate lyase by increasing isocitrate, which protects isocitrate dehydrogenase from the inhibition, and contributes to the control through the tricarboxylic acid cycle and glyoxylate shunt.  相似文献   

19.
During growth on succinate, Acinetobacter calcoaceticus contains two forms of the enzyme isocitrate dehydrogenase. Addition of acetate to a lag-phase culture grown on succinate causes a dramatic increase in activity of form II of isocitrate dehydrogenase and in isocitrate lyase. Form II of isocitrate dehydrogenase may be responsible for the partition of isocitrate between the TCA cycle and the glyoxylate by-pass. This report describes the phosphorylation of the enzyme isocitrate lyase from A. calcoaceticus. This phosphorylation may be a regulatory mechanism for the glyoxylate by-pass.  相似文献   

20.
Acetone degradation by cell suspensions of Desulfococcus biacutus was CO2 dependent, indicating initiation by a carboxylation reaction, while degradation of 3-hydroxybutyrate was not CO2 dependent. Growth on 3-hydroxybutyrate resulted in acetate accumulation in the medium at a ratio of 1 mol of acetate per mol of substrate degraded. In acetone-grown cultures no coenzyme A (CoA) transferase or CoA ligase appeared to be involved in acetone metabolism, and no acetate accumulated in the medium, suggesting that the carboxylation of acetone and activation to acetoacetyl-CoA may occur without the formation of a free intermediate. Catabolism of 3-hydroxybutyrate occurred after activation by CoA transfer from acetyl-CoA, followed by oxidation to acetoacetyl-CoA. In both acetone-grown cells and 3-hydroxybutyrate-grown cells, acetoacetyl-CoA was thioyltically cleaved to two acetyl-CoA residues and further metabolized through the carbon monoxide dehydrogenase pathway. Comparison of the growth yields on acetone and 3-hydroxybutyrate suggested an additional energy requirement in the catabolism of acetone. This is postulated to be the carboxylation reaction (delta G(o)' for the carboxylation of acetone to acetoacetate, +17.1 kJ.mol-1). At the intracellular acyl-CoA concentrations measured, the net free energy change of acetone carboxylation and catabolism to two acetyl-CoA residues would be close to 0 kJ.mol of acetone-1, if one mol of ATP was invested. In the absence of an energy-utilizing step in this catabolic pathway, the predicted intracellular acetoacetyl-CoA concentration would be 10(13) times lower than that measured. Thus, acetone catabolism to two acetyl-CoA residues must be accompanied by the utilization of teh energetic equivalent of (at lease) one ATP molecule. Measurement of enzyme activities suggested that assimilation of acetyl-CoA occurred through a modified citric acid cycle in which isocitrate was cleaved to succinate and glyoxylate. Malate synthase, condensing glyoxylate and acetyl-CoA, acted as an anaplerotic enzyme. Carboxylation of pyruvate of phosphoenolpyruvate could not be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号