首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inositol monophosphatase is an enzyme in the biosynthesis of myo-inostiol, a crucial substrate for the synthesis of phosphatidylinositol, which has been demonstrated to be an essential component of mycobacteria. In this study, the Rv2131c gene from Mycobacterium tuberculosis H37Rv was cloned into the pET28a vector and the recombinant plasmid was transformed into Escherichia coli BL21 (DE3) strain, allowing the expression of the enzyme in fusion with a histidine-rich peptide on the N-terminal. The fusion protein was purified from the soluble fraction of the lysed cells under native conditions by immobilized metal affinity chromatography (IMAC). The purified Rv2131c gene product showed inositol monophosphatase activity but with substrate specificity that was broader than those of several bacterial and eukaryotic inositol monophosphatases, and it also acted as fructose-1,6-bisphosphatase. The dimeric enzyme exhibited dual activities of IMPase and FBPase, with K(m) of 0.22+/-0.03mM for inositol-1-phosphate and K(m) of 0.45+/-0.05mM for fructose-1,6-bisphosphatase. To better understand the relationship between the function and structure of the Rv2131c enzyme, we constructed D40N, L71A, and D94N mutants and purified these corresponding proteins. Mutations of D40N and D94N caused the proteins to almost completely lose both the inositol monophosphatase and fructose-1,6-bisphosphatase activities. However, L71A mutant did not cause loss either of the activities, but the activity toward the inositol was 12-fold more resistant to inhibition by lithium (IC(50) approximately 60mM). Based on the substrate specificity and presence of conserved sequence motifs of the M. tuberculosis Rv2131c, we proposed that the enzyme belonged to class IV fructose-1,6-bisphosphatase (FBPase IV).  相似文献   

2.
Regulation of inositol monophosphatase in Saccharomyces cerevisiae   总被引:2,自引:2,他引:0  
Inositol monophosphatase is a key enzyme in the de novo biosynthesis of inositol and in the phosphoinositide second-messenger signalling pathway. Inhibition of this enzyme is a proposed mechanism for lithium's pharmacological action in bipolar illness (manic depression). Very little is known about how expression of this enzyme is regulated. Because the yeast Saccharomyces cerevisiae has been shown to be an excellent model system in which to understand the regulation of inositol metabolism, we characterized inositol monophosphatase in this yeast. Lithium inhibited monophosphatase activity in vitro . Growth in the presence of inositol resulted in increased expression of the enzyme in vivo , although inositol had no effect on enzyme activity in vitro . The inositol effect was apparent when cells were grown in glucose but not in glycerol/ethanol. Monophosphatase activity was derepressed as cells entered stationary phase. This effect was apparent only during growth in glucose plus inositol. The results demonstrate that S. cerevisiae monophosphatase is inhibited by lithium and regulated by factors affecting phospholipid biosynthesis.  相似文献   

3.
Inositol monophosphatase plays a vital role in the de novo biosynthesis of inositol and in the phosphoinositide second messenger signalling pathway. We cloned the Saccharomyces cerevisiae open reading frame (ORF) YHR046c (termed INM1), which encodes inositol monophosphatase, characterized the protein Inm1p and analysed expression of the INM1 gene. INM1 was expressed in bacteria under the control of the lacZ promoter. The purified protein has inositol monophosphatase activity that is inhibited by the antibipolar drug lithium, but not valproate. In the inm1Delta:URA3 null mutant, inositol monophosphatase activity was reduced but not eliminated. The disruption had little effect on growth in the presence of lithium or valproate and no effect on growth in the absence of inositol. To characterize the regulation of INM1, we examined the effects of inositol, carbon source, growth phase, and the antibipolar drugs lithium and valproate on INM1 expression using an INM1-lacZ reporter gene. Unlike all other phospholipid biosynthetic enzyme-encoding genes studied, which contain the UASINO regulatory element, INM1 expression is increased in the presence of inositol. In addition, INM1 expression was repressed during growth in glycerol and derepressed as glucose-grown cells entered stationary. Both lithium and valproate, which cause a decrease in intracellular inositol, effect a decrease in INM1 expression. A model is presented to account for regulation of INM1 expression.  相似文献   

4.
1. Hydrolysis of both enantiomers of inositol 1-phosphate and both enantiomers of inositol 4-phosphate to inositol is inhibited by LiCl in liver and brain. 2. The phosphatase activity is predominantly soluble. 3. Inositol 1,4-bisphosphate is also hydrolysed by the soluble fraction of liver and brain. 4. Bisphosphatase activity is inhibited by LiCl, but is less sensitive than monophosphatase activity. 5. The product of bisphosphatase in liver and brain is inositol 4-phosphate.  相似文献   

5.
Inositol monophosphatase is a key enzyme of the inositol phosphate second messenger signaling pathway. It is responsible for the provision of inositol required for synthesis of phosphatidylinositol and polyphosphoinositides and has been implicated as the pharmacological target for lithium action in brain. Using oligonucleotide probes based on partial amino acid sequence data for the bovine brain enzyme, several overlapping cDNA clones of 2-3 kilobases in length have been isolated. All contain an open reading frame encoding a 277-amino acid protein. No significant sequence homology was found with any known protein. The open reading frame was inserted into a bacterial expression vector in order to confirm the presumed identity of the protein. The expressed protein reacted with an anti-inositol monophosphatase monoclonal antibody. In addition, the protein was enzymically active and indistinguishable from the bovine brain enzyme with respect to Km values for substrate and Li+ sensitivity of inositol 1-phosphate hydrolysis.  相似文献   

6.
The suhB gene is located at 55 min on the Escherichia coli chromosome and encodes a protein of 268 amino acids. Mutant alleles of suhB have been isolated as extragenic suppressors for the protein secretion mutation (secY24), the heat shock response mutation (rpoH15), and the DNA synthesis mutation (dnaB121) (K. Shiba, K. Ito, and T. Yura, J. Bacteriol. 160:696-701, 1984; R. Yano, H. Nagai, K. Shiba, and T. Yura, J. Bacteriol. 172:2124-2130, 1990; S. Chang, D. Ng, L. Baird, and C. Georgopoulos, J. Biol. Chem. 266:3654-3660, 1991). These mutant alleles of suhB cause cold-sensitive cell growth, indicating that the suhB gene is essential at low temperatures. Little work has been done, however, to elucidate the role of the product of suhB in a normal cell and the suppression mechanisms of the suhB mutations in the aforementioned mutants. The sequence similarity shared between the suhB gene product and mammalian inositol monophosphatase has prompted us to test the inositol monophosphatase activity of the suhB gene product. We report here that the purified SuhB protein showed inositol monophosphatase activity. The kinetic parameters of SuhB inositol monophosphatase (Km = 0.071 mM; Vmax = 12.3 mumol/min per mg) are similar to those of mammalian inositol monophosphatase. The ssyA3 and suhB2 mutations, which were isolated as extragenic suppressors for secY24 and rpoH15, respectively, had a DNA insertion at the 5' proximal region of the suhB gene, and the amount of SuhB protein within mutant cells decreased. The possible role of suhB in E. coli is discussed.  相似文献   

7.
Inositol monophosphatases (IMPases) are lithium-sensitive enzymes that participate in the inositol cycle of calcium signalling and in inositol biosynthesis. Two open reading frames (YHR046c and YDR287w) with homology to animal and plant IMPases are present in the yeast genome. The two recombinant purified proteins were shown to catalyse inositol-1-phosphate hydrolysis sensitive to lithium and sodium. A double gene disruption had no apparent growth defect and was not auxotroph for inositol. Therefore, lithium effects in yeast cannot be explained by inhibition of IMPases and inositol depletion, as suggested for animal systems. Overexpression of yeast IMPases increased lithium and sodium tolerance and reduced the intracellular accumulation of lithium. This phenotype was blocked by a null mutation in the cation-extrusion ATPase encoded by the ENA1/PMR2A gene, but it was not affected by inositol supplementation. As overexpression of IMPases increased intracellular free Ca2+, it is suggested that yeast IMPases are limiting for the optimal operation of the inositol cycle of calcium signalling, which modulates the Ena1 cation-extrusion ATPase.  相似文献   

8.
Li Y  Chen Z  Li X  Zhang H  Huang Q  Zhang Y  Xu S 《Journal of biotechnology》2007,128(4):726-734
The need for novel antimicrobial agents to combat the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis is a worldwide urgency. This study has investigated the effects on phosphorothioate-modified antisense oligodeoxyribonucleotides (PS-ODNs) against the mRNA of inositol-1-phosphate synthase, the key enzyme in the first step in inositol synthesis. Inositol is utilized by M. tuberculosis in the production of its major thiol, which is an antioxidant that helps M. tuberculosis to get rid of reactive oxygen species and electrophilic toxins. Real-time RT-PCR analysis revealed that mRNA expression of inositol-1-phosphate (I-1-P) synthase was significantly reduced upon addition of 20 microM PS-ODNs. Treatment with antisense PS-ODNs also reduced the level of mycothiol and the proliferation of M. tuberculosis and enhanced susceptibility to antibiotics. The experiments indicated that the antisense PS-ODNs could enter the cytoplasm of M. tuberculosis and inhibit the expression of I-1-P synthase. This study demonstrates that the M. tuberculosis I-1-P synthase is a target for the development of novel antibiotics and PS-ODN to I-1-P synthase is a promising antimycobaterial candidate.  相似文献   

9.
Mitogenic stimulation of quiescent human fibroblasts (HSWP) with a growth factor mixture (consisting of epidermal growth factor (EGF), insulin, bradykinin, and vasopressin) rapidly induces an increase in Na influx via a Ca-mediated activation of an amiloride-sensitive Na/H exchanger. Inositol phosphates (specifically inositol-1',4',5'-phosphate) have been implicated in mediating the mobilization of intracellular Ca stores in other cell types and we have now completed a detailed analysis of the mitogen-induced release of inositol phosphates in HSWP cells. Stimulation of inositol trisphosphate release is rapid (within 5 s) and reaches a maximum level (416-485% basal) within 10-15 s after the addition of growth factor mixture. Inositol bisphosphate and inositol monophosphate reach maximum levels by 30 s (1257% basal) and 60 s (291% basal), respectively. Levels of all three compounds then decay toward basal levels but remain elevated (150-350% of basal levels) after 10 min of incubation with mitogens. The effects of different combinations of these growth factors and of the bee venom peptide, melittin, have also been determined. We have also found that 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate, which prevents the mitogen-induced rise in intracellular calcium activity and activation of Na influx, does not alter the mitogen-stimulated accumulation of inositol trisphosphate. In addition, the calcium ionophore A23187, which increases cytosolic Ca activity and induces a Na influx, does not stimulate the release of inositol trisphosphate. Assays performed in the presence of lithium, which inhibits inositol phosphate monophosphatase, promotes the prolonged and enhanced accumulation of inositol monophosphate. Treatment with the phospholipase inhibitor mepacrine or pretreatment with dexamethasone reduces the amount of inositol phosphates released upon mitogenic stimulation. Hence mitogenic stimulation of HSWP cells leads to the rapid stimulation of inositol phosphate release via a calcium-independent mechanism and suggests inositol trisphosphate as a candidate to mediate the release of intracellular calcium stores which is involved in the processes responsible for the activation of the Na/H exchanger.  相似文献   

10.
Inositol biosynthesis was studied in soluble, cell extracts of a wild-type (Ino) strain of Saccharomyces cerevisiae. Two reactions were detected: (i) conversion of D-glucose-6-phosphate to a phosphorylated form of inositol, presumably inositol-1-phosphate (IP synthethase, EC5.5.1.4), and (ii) conversion of phosphorylated inositol to inositol (IP phosphatase, EC3.1.3.25). The in vitro rate of conversion of glucose-6-phosphate to inositol was proportional to incubaion time and enzyme concentration. The pH optimum was 7.0. The synthesis of inositol required oxidized nicotinamide adenine dinucleotide (NAD) and was stimulated byNH4C1 and MgC12. NADP substituted poorly for NAD, and NADH inhibitedthe reaction. Phosphorylated inositol accumulated in the absence of MgC12, suggesting that inositol-phosphate is an intermediate in the pathway and that Mg ions stimulate the dephosphorylation of inositol-phosphate. IP synthetase was inhibited approximately 20% in the presence of inositol in the reaction mixture at concentrations exceeding 1 mM. The enzyme was repressed approximately 50-fold when inositol was present in the growth medium at concentrations exceeding 50 muM. IP synthetase reached the fully repressed level approximately 10 h after the addition of inositol to logarithmic cultures grown in the absence of inositol. The specific activity of the enzyme increased with time in logarithmically growing cultures lacking inositol andapproached the fully depressed level as the cells entered stationary phase.  相似文献   

11.
NADP(H) phosphatase has not been identified in eubacteria and eukaryotes. In archaea, MJ0917 of hyperthermophilic Methanococcus jannaschii is a fusion protein comprising NAD kinase and an inositol monophosphatase homologue that exhibits high NADP(H) phosphatase activity (S. Kawai, C. Fukuda, T. Mukai, and K. Murata, J. Biol. Chem. 280:39200-39207, 2005). In this study, we showed that the other archaeal inositol monophosphatases, MJ0109 of M. jannaschii and AF2372 of hyperthermophilic Archaeoglobus fulgidus, exhibit NADP(H) phosphatase activity in addition to the already-known inositol monophosphatase and fructose-1,6-bisphosphatase activities. Kinetic values for NADP+ and NADPH of MJ0109 and AF2372 were comparable to those for inositol monophosphate and fructose-1,6-bisphosphate. This implies that the physiological role of the two enzymes is that of an NADP(H) phosphatase. Further, the two enzymes showed inositol polyphosphate 1-phosphatase activity but not 3'-phosphoadenosine 5'-phosphate phosphatase activity. The inositol polyphosphate 1-phosphatase activity of archaeal inositol monophosphatase was considered to be compatible with the similar tertiary structures of inositol monophosphatase, fructose-1,6-bisphosphatase, inositol polyphosphate 1-phosphatase, and 3'-phosphoadenosine 5'-phosphate phosphatase. Based on this fact, we found that 3'-phosphoadenosine 5'-phosphate phosphatase (CysQ) of Escherichia coli exhibited NADP(H) phosphatase and fructose-1,6-bisphosphatase activities, although inositol monophosphatase (SuhB) and fructose-1,6-bisphosphatase (Fbp) of E. coli did not exhibit any NADP(H) phosphatase activity. However, the kinetic values of CysQ and the known phenotype of the cysQ mutant indicated that CysQ functions physiologically as 3'-phosphoadenosine 5'-phosphate phosphatase rather than as NADP(H) phosphatase.  相似文献   

12.
13.
Inositol monophosphatase (EC 3.1.3.25) in hyperthermophilic archaea is thought to play a role in the biosynthesis of di-myo-inositol-1,1'-phosphate (DIP), an osmolyte unique to hyperthermophiles. The Methanococcus jannaschii MJ109 gene product, the sequence of which is substantially homologous to that of human inositol monophosphatase, exhibits inositol monophosphatase activity but with substrate specificity that is broader than those of bacterial and eukaryotic inositol monophosphatases (it can also act as a fructose bisphosphatase). To understand its substrate specificity as well as the poor inhibition by Li(+) (a potent inhibitor of the mammalian enzyme), we have crystallized the enzyme and determined its three-dimensional structure. The overall fold, as expected, is similar to that of the mammalian enzyme, but the details suggest a closer relationship to fructose 1,6-bisphosphatases. Three complexes of the MJ0109 protein with substrate and/or product and inhibitory as well as activating metal ions suggest that the phosphatase mechanism is a three-metal ion assisted catalysis which is in variance with that proposed previously for the human inositol monophosphatase.  相似文献   

14.
NADP(H) phosphatase has not been identified in eubacteria and eukaryotes. In archaea, MJ0917 of hyperthermophilic Methanococcus jannaschii is a fusion protein comprising NAD kinase and an inositol monophosphatase homologue that exhibits high NADP(H) phosphatase activity (S. Kawai, C. Fukuda, T. Mukai, and K. Murata, J. Biol. Chem. 280:39200-39207, 2005). In this study, we showed that the other archaeal inositol monophosphatases, MJ0109 of M. jannaschii and AF2372 of hyperthermophilic Archaeoglobus fulgidus, exhibit NADP(H) phosphatase activity in addition to the already-known inositol monophosphatase and fructose-1,6-bisphosphatase activities. Kinetic values for NADP+ and NADPH of MJ0109 and AF2372 were comparable to those for inositol monophosphate and fructose-1,6-bisphosphate. This implies that the physiological role of the two enzymes is that of an NADP(H) phosphatase. Further, the two enzymes showed inositol polyphosphate 1-phosphatase activity but not 3′-phosphoadenosine 5′-phosphate phosphatase activity. The inositol polyphosphate 1-phosphatase activity of archaeal inositol monophosphatase was considered to be compatible with the similar tertiary structures of inositol monophosphatase, fructose-1,6-bisphosphatase, inositol polyphosphate 1-phosphatase, and 3′-phosphoadenosine 5′-phosphate phosphatase. Based on this fact, we found that 3′-phosphoadenosine 5′-phosphate phosphatase (CysQ) of Escherichia coli exhibited NADP(H) phosphatase and fructose-1,6-bisphosphatase activities, although inositol monophosphatase (SuhB) and fructose-1,6-bisphosphatase (Fbp) of E. coli did not exhibit any NADP(H) phosphatase activity. However, the kinetic values of CysQ and the known phenotype of the cysQ mutant indicated that CysQ functions physiologically as 3′-phosphoadenosine 5′-phosphate phosphatase rather than as NADP(H) phosphatase.  相似文献   

15.
Inositol is utilized by Mycobacterium tuberculosis in the production of its major thiol and of essential cell wall lipoglycans. We have constructed a mutant lacking the gene encoding inositol-1-phosphate synthase (ino1), which catalyses the first committed step in inositol synthesis. This mutant is only viable in the presence of extremely high levels of inositol. Mutant bacteria cultured in inositol-free medium for four weeks showed a reduction in levels of mycothiol, but phosphatidylinositol mannoside, lipomannan and lipoarabinomannan levels were not altered. The ino1 mutant was attenuated in resting macrophages and in SCID mice. We used site-directed mutagenesis to alter four putative active site residues; all four alterations resulted in a loss of activity, and we demonstrated that a D310N mutation caused loss of the active site Zn2+ ion and a conformational change in the NAD+ cofactor.  相似文献   

16.
Inositol monophosphatase is a potential drug target for developing lithium-mimetic agents for the treatment of bipolar disorder. Enzyme-based assays have been traditionally used in compound screening to identify inositol monophosphatase inhibitors. A cell-based screening assay in which the compound needs to cross the cell membrane before reaching the target enzyme offers a new approach for discovering novel structure leads of the inositol monophosphatase inhibitor. The authors have recently reported a high-throughput measurement of G-protein-coupled receptor activation by determining inositol phosphates in cell extracts using scintillation proximity assay. This cell-based assay has been modified to allow the determination of inositol monophosphatase activity instead of G-protein-coupled receptors. The enzyme is also assayed in its native form and physiological environment. The authors have applied this cell-based assay to the high-throughput screening of a large compound collection and identified several novel inositol monophosphatase inhibitors.  相似文献   

17.
The Escherichia coli product of the suhB gene, SuhB, is an inositol monophosphatase (IMPase) that is best known as a suppressor of temperature-sensitive growth phenotypes in E. coli. To gain insights into these biological diverse effects, we determined the structure of the SuhB R184A mutant protein. The structure showed a dimer organization similar to other IMPases, but with an altered interface suggesting that the presence of Arg-184 in the wild-type protein could shift the monomer-dimer equilibrium toward monomer. In parallel, a gel shift assay showed that SuhB forms a tight complex with RNA polymerase (RNA pol) that inhibits the IMPase catalytic activity of SuhB. A variety of SuhB mutant proteins designed to stabilize the dimer interface did not show a clear correlation with the ability of a specific mutant protein to complement the DeltasuhB mutation when introduced extragenically despite being active IMPases. However, the loss of sensitivity to RNA pol binding, i.e. in G173V, R184I, and L96F/R184I, did correlate strongly with loss of complementation of DeltasuhB. Because residue 184 forms the core of the SuhB dimer, it is likely that the interaction with RNA polymerase requires monomeric SuhB. The exposure of specific residues facilitates the interaction of SuhB with RNA pol (or another target with a similar binding surface) and it is this heterodimer formation that is critical to the ability of SuhB to rescue temperature-sensitive phenotypes in E. coli.  相似文献   

18.
【目的】肌醇别名环己六醇,是一种具有生物活性的糖醇,在医药、食品和饲料等领域具有重要的应用价值。为获得生产肌醇的微生物细胞工厂,通过代谢工程改造,构建生产肌醇的酿酒酵母工程菌株。【方法】对酿酒酵母肌醇合成途径的正负调控同时改造,过表达肌醇-3-磷酸合成酶基因ino1,敲除肌醇生物合成的转录抑制子基因opi1和抗性基因kan MX,获得重组菌。利用气相色谱法检测重组菌发酵液中肌醇含量。【结果】构建了生物安全性的产肌醇基因工程菌株,摇瓶培养产量为1.021 g/L。【结论】通过过表达ino1和敲除opi1来改造酿酒酵母,能够有效提高重组菌的肌醇产量,为下一步的微生物发酵法产肌醇的工业应用奠定基础。  相似文献   

19.
In a particulate preparation from rat brain, manganese ions stimulate the incorporation of [3H]inositol into inositol phospholipids in a concentration-dependent manner. Incubation with CDP-diacylglycerol (0.5 mM) alone had no effect on the incorporation of [3H]inositol but potentiated the stimulatory effect of manganese. Despite the increase in [3H]inositol incorporation into phosphatidylinositol, the carbachol-induced accumulation of [3H]inositol-1-phosphate was unaltered in membranes preincubated with manganese but when coincubated with CDP-diacylglycerol the carbachol-induced accumulation of [3H]inositol-1-phosphate was increased. These data suggest that manganese stimulates the incorporation of [3H]inositol into an agonist-insensitive pool of phosphatidylinositol.  相似文献   

20.
In a genetic screen for Saccharomyces cerevisiae mutants hypersensitive to the inositol-depleting drugs lithium and valproate, a loss of function allele of TPI1 was identified. The TPI1 gene encodes triose phosphate isomerase, which catalyzes the interconversion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate. A single mutation (N65K) in tpi1 completely abolished Tpi1p enzyme activity and led to a 30-fold increase in the intracellular DHAP concentration. The tpi1 mutant was unable to grow in the absence of inositol and exhibited the "inositol-less death" phenotype. Similarly, the pgk1 mutant, which accumulates DHAP as a result of defective conversion of 3-phosphoglyceroyl phosphate to 3-phosphoglycerate, exhibited inositol auxotrophy. DHAP as well as glyceraldehyde 3-phosphate and oxaloacetate inhibited activity of both yeast and human myo-inositol-3 phosphate synthase, the rate-limiting enzyme in de novo inositol biosynthesis. Implications for the pathology associated with TPI deficiency and responsiveness to inositol-depleting anti-bipolar drugs are discussed. This study is the first to establish a connection between perturbation of glycolysis and inhibition of de novo inositol biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号