首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The neural crest-derived precursors of the sympathoadrenal lineage depend on environmental cues to differentiate as sympathetic neurons and pheochromocytes. We have used the monoclonal antibody A2B5 as a marker for neuronal differentiation and antisera against catecholamine synthesis enzymes to investigate the differentiation of catecholaminergic cells in cultures of quail neural crest cells. Cells corresponding phenotypically to sympathetic neurons and pheochromocytes can be identified in neural crest cell cultures after 5-6 days in vitro. Expression of the A2B5 antigen precedes expression of immunocytochemically detectable levels of tyrosine hydroxylase in cultured neural crest cells. Glucocorticoid treatment decreases the proportion of TH+ neural crest cells that express neuronal traits. We conclude that environmental cues normally encountered by sympathoadrenal precursors in vivo can influence the differentiation of a subpopulation of cultured neural crest cells in the sympathoadrenal lineage.  相似文献   

10.
In the peripheral nervous system, enteric and sympathetic neurons develop from multipotent neural crest cells. While local environmental signals in the gut and in the region of the sympathetic ganglia play a role in the choice of cell fate, little is known about the mechanisms that underlie restriction to specific neuronal phenotypes. We investigated the divergence and restriction of the enteric and sympathetic neuronal lineages using immuno-isolated neural crest-derived cells from the gut and sympathetic ganglia. Analysis of neuronal and lineage-specific mRNAs and proteins indicated that neural crest-derived cells from the gut and sympathetic ganglia had initiated neuronal differentiation and phenotypic divergence by E14.5 in the rat. We investigated the developmental potential of these cells using expression of tyrosine hydroxylase as a marker for a sympathetic phenotype. Tyrosine hydroxylase expression was examined in neurons that developed from sympathetic and enteric neuroblasts under the following culture conditions: culture alone; coculture with gut monolayers to promote enteric differentiation; or coculture with dorsal aorta monolayers to promote noradrenergic differentiation. Both enteric and sympathetic neuroblasts displayed developmental plasticity at E14.5. Sympathetic neuroblasts downregulated tyrosine hydroxylase in response to signals from the gut environment and enteric neuroblasts increased expression of tyrosine hydroxylase when grown on dorsal aorta or in the absence of other cell types. Tracking of individual sympathetic cells displaying a neuronal morphology at the time of plating indicated that neuroblasts retained phenotypic plasticity even after initial neuronal differentiation had occurred. By E19.5 both enteric and sympathetic neuroblasts had undergone a significant loss of their developmental potential, with most neuroblasts retaining their lineage-specific phenotype in all environments tested. Together our data indicate that the developmental potential of enteric and sympathetic neuroblasts becomes restricted over time and that this restriction takes place not as a consequence of initial neuronal differentiation but during the period of neuronal maturation. Further, we have characterized a default pathway of adrenergic differentiation in the enteric nervous system and have defined a transient requirement for gut-derived factors in the maintenance of the enteric neuronal phenotype.  相似文献   

11.
12.
Neural crest-derived structures that depend critically upon expression of the basic helix-loop-helix DNA binding protein Hand2 for normal development include craniofacial cartilage and bone, the outflow tract of the heart, cardiac cushion, and noradrenergic sympathetic ganglion neurons. Loss of Hand2 is embryonic lethal by E9.5, obviating a genetic analysis of its in-vivo function. We have overcome this difficulty by specific deletion of Hand2 in neural crest-derived cells by crossing our line of floxed Hand2 mice with Wnt1-Cre transgenic mice. Our analysis of Hand2 knock-out in neural crest-derived cells reveals effects on development in all neural crest-derived structures where Hand2 is expressed. In the autonomic nervous system, conditional disruption of Hand2 results in a significant and progressive loss of neurons as well as a significant loss of TH expression. Hand2 affects generation of the neural precursor pool of cells by affecting both the proliferative capacity of the progenitors as well as affecting expression of Phox2a and Gata3, DNA binding proteins important for the cell autonomous development of noradrenergic neurons. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting differentiation and cell type-specific gene expression in neural crest-derived noradrenergic sympathetic ganglion neurons. Hand2 has a pivotal function in a non-linear cross-regulatory network of DNA binding proteins that affect cell autonomous control of differentiation and cell type-specific gene expression.  相似文献   

13.
We have analyzed the distribution of neural crest-derived precursors and the expression of catecholaminergic and neuronal markers in developing adrenal tissue of chick embryos. Undifferentiated neural crest cells are found in presumptive adrenal regions from embryonic day 3 (E3) onward. An increasing proportion of cells expressing tyrosine hydroxylase (TH) mRNA indicates catecholaminergic differentiation of precursors not only in primary sympathetic ganglia, but also in presumptive adrenal regions. Whereas precursors and differentiating cells show mesenchymal distribution until E5, discrete adrenal anlagen form during E6. Even during E5, catecholaminergic cells with low or undetectable neurofilament M (NF-M) mRNA expression prevail in positions at which adrenal anlagen become distinct during E6. The predominance of TH-positive and NF-M-negative cells is maintained throughout embryogenesis in adrenal tissue. RNA encoding SCG10, a pan-neuronal marker like NF-M, is strongly expressed throughout adrenal anlagen during E6 but is found at reduced levels in chromaffin cells compared with neuronal cells at E15. Two additional neuronal markers, synaptotagmin 1 and neurexin 1, are expressed at low to undetectable levels in developing chromaffin cells throughout embryogenesis. The developmental regulation of neuronal markers shows at least three different patterns among the four mRNAs analyzed. Importantly, there is no generalized downregulation of neuronal markers in developing adrenal anlagen. Thus, our observations question the classical concept of chromaffin differentiation from a common sympathoadrenal progenitor expressing neuronal properties and suggest alternative models with changing instructive signals or separate progenitor populations for sympathetic neuronal and chromaffin endocrine cells.Chaya Kalcheim and Klaus Unsicker are supported by the Deutsche Forschungsgemeinschaft (SFB 488)  相似文献   

14.
15.
16.
Avian trunk neural crest cells give rise to a variety of cell types including neurons and satellite glial cells in peripheral ganglia. It is widely assumed that crest cell fate is regulated by environmental cues from surrounding embryonic tissues. However, it is not clear how such environmental cues could cause both neurons and glial cells to differentiate from crest-derived precursors in the same ganglionic locations. To elucidate this issue, we have examined expression and function of components of the NOTCH signaling pathway in early crest cells and in avian dorsal root ganglia. We have found that Delta1, which encodes a NOTCH ligand, is expressed in early crest-derived neuronal cells, and that NOTCH1 activation in crest cells prevents neuronal differentiation and permits glial differentiation in vitro. We also found that NUMB, a NOTCH antagonist, is asymmetrically segregated when some undifferentiated crest-derived cells in nascent dorsal root ganglia undergo mitosis. We conclude that neuron-glia fate determination of crest cells is regulated, at least in part, by NOTCH-mediated lateral inhibition among crest-derived cells, and by asymmetric cell division.  相似文献   

17.
Avian sensory ganglia contain a population of normally latent autonomic-type precursors with noradrenergic potentialities. Their differentiation in vitro into cells expressing tyrosine hydroxylase immunoreactivity is acutely dependent on the presence of one or more substances found in chick embryo extract (CEE). We have used cultures of dissociated dorsal root ganglia from embryonic quail as a model system in which to assay factors promoting catecholaminergic differentiation, the latter being appreciated quantitatively in terms of the number of tyrosine hydroxylase-positive cells present after 6 days in vitro; over a large range of concentrations, the number of such cells is directly proportional to the amount of CEE in the medium. In the course of attempts to replace CEE by defined bioactive molecules, we found that epidermal growth factor, fibroblast growth factor or nerve growth factor possessed negligible, or only marginal, noradrenergic differentiation-promoting activity. In contrast, insulin, at nanomolar levels, triggered expression of the catecholaminergic phenotype as well as did CEE. Insulin-like growth factor-I, at similar concentrations, had an analogous effect. It is suggested that an insulin-like molecule may play a role in the normal differentiation of sympathoblast precursors in vivo.  相似文献   

18.
Transient catecholaminergic (TC) cells have been found to appear in the vagal pathway and bowel of fetal mice and rats. It has been proposed that these cells are migrating vagal crest-derived precursors of enteric neurons that lose their catecholaminergic properties when they terminally differentiate. In the current experiments, segments of fetal mouse gut were explanted before (day E9) TC cells or any neural markers could be detected in situ. Tyrosine hydroxylase (TH)-immunoreactive neurons developed in vitro in 4/12 such explants; therefore, cells with a catecholaminergic potential are present in the gut of at least some animals prior to the in situ expression of this phenotype. The neurogenic potential of cells in the vagal pathway was similarly tested by studying cultures of explanted vagus nerves (day E11). These studies revealed that neural precursors were present in the vagi and gave rise in vitro to neurons that displayed acetylcholinesterase (AChE) activity and neuron-specific enolase (NSE) immunoreactivity. A subset of these neural precursors were capable of migrating and formed satellite ganglia at a distance from the explants. Coincident expression of NSE and TH immunoreactivities was observed, indicating that at least some of the neurons that developed in vitro were derived from TC cells. Vagal TC cells, therefore, are neurogenic. Catecholaminergic cells did not disappear from cultured explants of vagus nerves or gut provided that these tissues contained TC cells at the time of explantation. Instead, catecholaminergic neurons developed and persisted in vitro for as long as cultures were maintained. These neurons contained aromatic L-amino acid decarboxylase as well as TH, NSE and neurofilament immunoreactivities. In contrast, if the bowel was explanted after the in situ disappearance of TC cells, catecholaminergic cells did not arise in the cultures. These experiments indicate that the period of time during which a catecholaminergic phenotype is expressed by neural precursors in the fetal vagal pathway and gut is not fixed, but can be changed by altering the environment of the cells as occurs when the bowel is grown in vitro; moreover, contact with non-neuronal cells within the bowel is not by itself sufficient to inactivate catecholaminergic expression. The nature of the signal responsible for loss of the catecholaminergic phenotype in situ remains to be determined; however, the persistence of catecholaminergic expression in vitro should facilitate the investigation of this signal.  相似文献   

19.
The cutaneous sensory neurons of the ophthalmic lobe of the trigeminal ganglion are derived from two embryonic cell populations, the neural crest and the paired ophthalmic trigeminal (opV) placodes. Pax3 is the earliest known marker of opV placode ectoderm in the chick. Pax3 is also expressed transiently by neural crest cells as they emigrate from the neural tube, and it is reexpressed in neural crest cells as they condense to form dorsal root ganglia and certain cranial ganglia, including the trigeminal ganglion. Here, we examined whether Pax3+ opV placode-derived cells behave like Pax3+ neural crest cells when they are grafted into the trunk. Pax3+ quail opV ectoderm cells associate with host neural crest migratory streams and form Pax3+ neurons that populate the dorsal root and sympathetic ganglia and several ectopic sites, including the ventral root. Pax3 expression is subsequently downregulated, and at E8, all opV ectoderm-derived neurons in all locations are large in diameter, and virtually all express TrkB. At least some of these neurons project to the lateral region of the dorsal horn, and peripheral quail neurites are seen in the dermis, suggesting that they are cutaneous sensory neurons. Hence, although they are able to incorporate into neural crest-derived ganglia in the trunk, Pax3+ opV ectoderm cells are committed to forming cutaneous sensory neurons, their normal fate in the trigeminal ganglion. In contrast, Pax3 is not expressed in neural crest-derived neurons in the dorsal root and trigeminal ganglia at any stage, suggesting either that Pax3 is expressed in glial cells or that it is completely downregulated before neuronal differentiation. Since Pax3 is maintained in opV placode-derived neurons for some considerable time after neuronal differentiation, these data suggest that Pax3 may play different roles in opV placode cells and neural crest cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号