首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tectal evoked potentials to stimulation of the facial nerve, containing afferent fibers of nonolfactory chemoreception, in the carp are positive evoked potentials with a latent period of 5 to 25 msec which show no phase shift as the microelectrode is advanced to a depth of 600 µ. Depending on the amplitude and latency of evoked potentials seven active zones differing in one or both parameters were distinguished in the ipsilateral tectum mesencephali. The role of impulses from the medulla in the mechanism of tectal evoked potentials to facial nerve stimulation is proved by differences in latent periods and disappearance of the tectal response (although it is preserved in the primary center) after severance of connections between the two parts of the brain. Descending influences from the tectum on the primary center were found: its extirpation disturbs evoked potential generation in several parts of the medullla, so that they either disappear completely or their parameters are modified.A. A. Zhdanov State University, Leningrad. Translated from Neirofiziologiya, Vol. 8, No. 1, pp. 39–46, January–February, 1976.  相似文献   

2.
A linear correlation was established between aspartic acid racemization ratio from cave bear dentine collagen and absolute dating. The high correlation coefficient obtained allowed age calculation through amino acid racemization. Aspartic acid and glutamic acid racemization kinetics have also been explored in dentine from a North American black bear (Ursus americanus Pallas). Three sample sets were prepared for kinetic heating experiments in nitrogen atmosphere: one water soaked, one with a water-saturated nitrogen atmosphere, and one without any moisture. It was possible to show that the presence of water is a factor controlling amino acid racemization rate. The aspartic acid in a heating experiment at 105 degrees C shows an "apparent kinetics reversal" which can be explained by a progressive hydrolysis of amino acid chains (proteins and polypeptides). Because of the low potential of collagen preservation over long periods of time, the apparent kinetics reversal phenomenon will not affect the dating of old material where no traces of collagen remain. An apparent kinetics reversal was not observed in glutamic acid, which racemizates more slowly.  相似文献   

3.
To the best of our knowledge, there is no simple way to induce neural networks to shift from waking mode into sleeping mode. Our best guess is that a whole group of neurons would be involved and that the process would develop in a period of time and a sequence which are mostly unknown. The quasi-total sensory deprivation elicits a new behavioral state called somnolence. Auditory stimulation as well as total auditory deprivation alter sleep architecture. Auditory units exhibiting firing shifts on passing to sleep (augmenting or diminishing) are postulated to be locked to sleep-related networks. Those ( approximately 50%) that did not change during sleep are postulated to continue informing the brain as in wakefulness. A rhythmic functional plasticity of involved networks is postulated. A number of auditory and visual cells have demonstrated a firing phase locking to the hippocampal theta rhythm. This phase locking occurs both during wakefulness and sleep phases. The theta rhythm may act as an organizer of sensory information in visual and auditory systems, in all behavioral states adding a temporal dimension to the sensory processing. Sensory information from the environment and body continuously modulates the central nervous system activity, over which sleep phenomenology must develop. It also produces a basal tonus during wakefulness and sleep, determining changes in the networks that contribute to sleep development and maintenance and, eventually, it also leads to sleep interruption.  相似文献   

4.
In agreement with theories of sequence learning, hippocampal place representations expand asymmetrically during repeated route following. This behaviorally induced, experience-dependent expression of neuronal plasticity was blocked by the NMDA(R) antagonist CPP, suggesting that it may result from the temporal asymmetry and associative properties of LTP. NMDA(R) antagonism, however, had no effect on the range of the progressive shift of firing phase of hippocampal cells, relative to the theta rhythm, as the rat traverses the cell's "place field." Thus, when place fields normally expand with experience, the relationship between firing phase and position is altered, as predicted by models that account for "phase precession" on the basis of asymmetry of synaptic connection strengths. These effects of CPP mimic changes that occur during normal aging, suggesting mechanisms by which sequence learning deficits may arise in aged animals.  相似文献   

5.
Mathematical modeling of the electric activity of pairs of true (central) and latent (peripheral) sinoatrial pacemaker cells coupled through gap junctions revealed that attenuation of coupling conductance increases the beat phase shift; below a critical conductance there is no synchronization. The phase difference also depends on the type of interacting cells, being maximal for a “central”-“peripheral” cell pair.  相似文献   

6.
Night shift work is associated with a myriad of health and safety risks. Phase-shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a "snapshot" of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (approximately 3500 lux; approximately 1100 microW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths--especially short wavelengths ("blue-blockers")--while traveling home after the shifts, and sleep in the dark (08:30-15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24+/-0.8 h (mean+/-SD) at baseline and 7:36+/-1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00+/-1.2 h at baseline and drifted to 4:36+/-1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

7.
Some changes of the organization of cortical motor representations, which were revealed by means of the intracortical microstimulation (ICMS) in aged rats after unilateral partial decortication, were true consequences of the decortication, but had no significant relationship to the aging. Distributions of latent periods of contralateral hind-leg EMG-responses to the ICMS had no significant shifts both during aging and after the surgery. Values of short-latency responses of ipsilateral proximal and axial muscles to the ICMS were in late time periods, from 8 to 16 months after surgery, significantly lower than ones of contralateral homonymous muscles. It is supposed, that ipsi- and bilateral short-latency responses to the ICMS in proximal and axial muscles of operated rats during late time periods are relayed through some pathways from the brain stem to the spinal cord.  相似文献   

8.
Primary cultures of glial cells prepared from brains of newborn rats were grown for periods of 1–5 weeks. After a proliferative phase of between 2 and 3 weeks, the cultures were maintained in stationary phase, during which a significant increase of oxygen consumption and of the activities of lactate dehydrogenase, succinate dehydrogenase, and mitochondrial glycerolphosphate dehydrogenase could be observed. Furthermore, qualitative changes in the lactate dehydrogenase isoenzyme pattern were found with time, characterized by a shift toward an enhanced synthesis of H subunits. A similar development was found in comparing the LDH isoenzyme pattern in the brain of 15-day-old rat embryo with those of newborn and adult rat brains. It is suggested that some aspects of maturation of glial cells in culture are comparable to those occurring in whole brain in vivo, namely a shift towards an enhanced aerobic metabolism.  相似文献   

9.
An algorithm to enumerate sorting reversals for signed permutations.   总被引:1,自引:0,他引:1  
The rearrangement distance between single-chromosome genomes can be estimated as the minimum number of inversions required to transform the gene ordering observed in one into that observed in the other. This measure, known as "inversion distance," can be computed as the reversal distance between signed permutations. During the past decade, much progress has been made both on the problem of computing reversal distance and on the related problem of finding a minimum-length sequence of reversals, which is known as "sorting by reversals." For most problem instances, however, many minimum-length sequences of reversals exist, and in the absence of auxiliary information, no one is of greater value than the others. The problem of finding all minimum-length sequences of reversals is thus a natural generalization of sorting by reversals, yet it has received little attention. This problem reduces easily to the problem of finding all "sorting reversals" of one permutation with respect to another - that is, all reversals rho such that, if rho is applied to one permutation, then the reversal distance of that permutation from the other is decreased. In this paper, an efficient algorithm is derived to solve the problem of finding all sorting reversals, and experimental results are presented indicating that, while the new algorithm does not represent a significant improvement in asymptotic terms (it takes O(n(3)) time, for permutations of size n; the problem can now be solved by brute force in Theta(n(3)) time), it performs dramatically better in practice than the best known alternative. An implementation of the algorithm is available at www.cse.ucsc.edu/~acs.  相似文献   

10.
Summary In early insect embryogenesis, mitosis (which is not accompanied by cell division) often starts at one or both egg poles and spreads like a wave over the egg. Relationships between these waves and those processes which coordinate spatial cell differentiation have been proposed. One possibility is that the egg region which has a slower mitotic rate may become temporally advanced in differentiation because of its longer interphase periods, so that the egg becomes polarized (Agrell 1962). Alternatively, the mitotic waves might reflect the position of different determined states (Kauffman 1973). We investigated the mitotic waves inCallosobruchus eggs, treated to produce 20% partially reversed segment sequences (double abdomens). In normal eggs, mitotic waves move predominantly from anterior to posterior whereas in treated eggs, the reversed posterior to anterior orientation was predominant. Despite this, we concluded that mitotic waves do not reflect processes involved in the specification of segment position because the reversal of mitotic waves was more than twice as frequent as the reversal of segment sequence and because they occurred in various control experiments in which there was no reversal of segment sequence.  相似文献   

11.

Background

A run chart is a line graph of a measure plotted over time with the median as a horizontal line. The main purpose of the run chart is to identify process improvement or degradation, which may be detected by statistical tests for non-random patterns in the data sequence.

Methods

We studied the sensitivity to shifts and linear drifts in simulated processes using the shift, crossings and trend rules for detecting non-random variation in run charts.

Results

The shift and crossings rules are effective in detecting shifts and drifts in process centre over time while keeping the false signal rate constant around 5% and independent of the number of data points in the chart. The trend rule is virtually useless for detection of linear drift over time, the purpose it was intended for.  相似文献   

12.
短暂脑缺血可对随后的损伤性脑缺血表现出明显的耐受.有研究表明大电导Ca2+依赖K+(BKCa)通道活动增强参与了缺血性脑损伤.采用膜片钳的内面向外式,观察了3 min短暂脑缺血后6 h、24 h以及48 h大鼠海马CA1区锥体细胞上BKCa通道活动的动态变化.短暂脑缺血后BKCa通道的单通道电导和翻转电位均未见明显变化,但通道的开放概率则在缺血预处理后的前24 h内显著降低.通道动力学分析显示通道关闭时间变长是短暂脑缺血后通道活动降低的主要原因,因为通道的开放时间未发生明显变化.结果提示短暂脑缺血所致的BKCa通道活动降低可能与缺血耐受的产生有关.  相似文献   

13.
While dominance relationships have been widely studied in chimpanzees, in bonobos, dominance style and linearity of hierarchy are still under debate. In fact, some authors stated that bonobo hierarchy is nonlinear/ill-defined, while others claimed that it is fairly linear. In this paper, we test the hypothesis that a shift in group composition determines changes in linearity of hierarchy. To test this hypothesis, we collected data on one of the largest captive groups in the world, in the Apenheul Primate Park (The Netherlands). We investigated the linearity of the hierarchy in two different periods, with a shifting group composition. We used the corrected Landau's index and David's scores to estimate which animals were most dominant. The major overall result of our study is that hierarchy is fairly nonlinear in this group: during the first study period (eight adults), the hierarchy was nonlinear, whereas during the second one (six adults), it failed to reach statistical linearity. We argue that the reduction of the number of adults is the principal factor affecting linearity. We also found that dominance interactions were evenly distributed across sex classes in both study periods. Furthermore, no correlation was observed between age/body weight and rank. As for the overall dominance relationship between males and females, our results suggest that there is no exclusive female dominance in the Apenheul group. The dominance style of bonobos may be loose and differentially expressed in diverse groups or in the same group, along with shifting conditions.  相似文献   

14.
Pulsations of the dorsal vessel were investigated with new optocardiographic techniques based on the transmission and reflection of pulse-light through optic fibers. This noninvasive technique enabled simultaneous, in vivo multisensor recordings of the heartbeat without touching the pupal integument. There was a very regular heartbeat reversal with 3 distinctive phases: (a) a backward-oriented (retrograde) cardiac pulsation; (b) a forward-oriented (anterograde) pulsation with faster frequency; and (c) shorter or longer periods of temporary cardiac standstill that usually occurred after the termination of the anterograde phase. Occasionally, there were localized series of systolic cardiac contractions during the retrograde phase. Simultaneous recordings from the base and the tail of the abdomen revealed a reciprocal, "mirror image-like", quantitative relationship. The most intensive anterograde hemolymph flow occurred at the base while the most intensive retrograde flow occurred at the tail of the abdomen. The bi-directional switchovers of heartbeat (reversal) were occasionally associated with modifications during each of the unidirectional cardiac phases. Anterograde peristalsis showed a 2-fold higher frequency of pulsation in the thoracic aorta in comparison with the posterior parts of the heart. Thus, in addition to the "odd" peristaltic waves originating at the tail, there were intercallated "even" peristaltic waves originating in the middle of the abdomen. Both of them propagated hemolymph through the thoracic aorta into the head; the first waves took the hemolymph in from the distal end, while the second sucked it from the middle of the abdomen. The use of multiple optocardiographic sensors also enabled detection of cardiac pulsations on the opposite, ventral side of the body, within the ventral perineural sinus. The ventral side of the head showed only the presence of an anterograde pulse, whereas the ventral side of the tail exhibited a strong reciprocal retrograde phase and a very weak anterograde phase. These results explain why the existence of a periodic heartbeat reversal should be essential for circulatory functions at both extremities of the cylindrical insect body. In diapausing pupae, regular cycles of heartbeat reversal were substituted by prolonged periods of anterograde pulsation during the entire duration of bursts of CO2 release (average duration of the burst was 18-20 min, periodicity 5 to 18 h). The physiological nature of such feed-back correlation between heartbeat and metabolic CO2 production is not yet clear, because the anterograde heartbeat could be also induced by a number of nonspecific factors unrelated to CO2 (mechanical irritation, injury, injections, elevated temperature). During the postdiapause, developing pharate-adult stage, the correlation between CO2 and anterograde heartbeat completely disappeared. It has been concluded that regulation of insect heartbeat represents a highly coordinated, myogenic stereotype with inherent rhythmicity, which can be modified by a number of external and internal factors.  相似文献   

15.
Proton nuclear magnetic resonance spectra at 360 MHz of small sonicated distearoyl phosphatidylcholine vesicles show easily distinguishable resonances due to choline N-methyl head-group protons located in the inner and outer bilayer halves. A study of the chemical shift of these resonances as a function of temperature reveals that the splitting between them increases below the phase transition. This occurs as a result of an upfield shift of the inner layer resonance at the phase transition. Consideration of the possible causes of this effect results in the conclusion that, at the phase transition, there is a change in the organization of the inner layer head-groups which does not occur for the outer layer head-groups.  相似文献   

16.
Diurnal animals occupy a different temporal niche from nocturnal animals and are consequently exposed to different amounts of light as well as different dangers. Accordingly, some variation exists in the way that diurnal animals synchronize their internal circadian clock to match the external 24-hour daily cycle. First, though the brain mechanisms underlying photic entrainment are very similar among species with different daily activity patterns, there is evidence that diurnal animals are less sensitive to photic stimuli compared to nocturnal animals. Second, stimuli other than light that synchronize rhythms (i.e. nonphotic stimuli) can also entrain and phase shift daily rhythms. Some of the rules that govern nonphotic entrainment in nocturnal animals as well as the brain mechanisms that control nonphotic influences on rhythms do not appear to apply to diurnal animals, however. Some evidence supports the idea that arousal or activity plays an important role in entraining rhythms in diurnal animals, either during the light (active) or dark (inactive) phases, though no consistent pattern is seen. GABAergic stimulation induces phase shifts during the subjective day in both diurnal and nocturnal animals. In diurnal Arvicanthis niloticus (Nile grass rats), SCN GABAA receptor activation at this time results in phase delays while in nocturnal animals phase advances are induced. It appears that the effect of GABA at this circadian phase results from the inhibition of period gene expression in both diurnal and nocturnal animals. Nonetheless, the resulting phase shifts are in opposite directions. It is not known what stimuli or behaviours ultimately induce changes in GABA activity in the SCN that result in alterations of circadian phase in diurnal grass rats. Taken together, studies such as these suggest that it may be problematic to apply the principles governing nocturnal nonphotic entrainment and its underlying mechanisms to diurnal species including humans.  相似文献   

17.
As a model for studying of "subconsciousness" mechanisms, latent foci of excitation may serve formed in animals under different influences on the brain: direct current, endogenous shifts and also under trace excitation after suprathreshold activity. It is experimentally shown that latent foci of excitation can intensify at activation of other CNS areas; as a result externally unmotivated "unpredictable" behavioural reaction arises. Between two latent foci of excitation associative connection can be established. The latent foci of excitation in the human CNS are also able to be activated under the influence of sensory stimuli, and behavioural reaction arising as a result of summation has no reflection in consciousness. Conclusion is made: it is rightful to consider the dominant foci of excitation formed at the level of subconsciousness as one of possible mechanisms of "unpredictability" of behaviour.  相似文献   

18.
Accumulating evidence suggests that the brain can efficiently process both external and internal information. The processing of internal information is a distinct "offline" cognitive mode that requires not only spontaneously generated mental activity; it has also been hypothesized to require a decoupling of attention from perception in order to separate competing streams of internal and external information. This process of decoupling is potentially adaptive because it could prevent unimportant external events from disrupting an internal train of thought. Here, we use measurements of pupil diameter (PD) to provide concrete evidence for the role of decoupling during spontaneous cognitive activity. First, during periods conducive to offline thought but not during periods of task focus, PD exhibited spontaneous activity decoupled from task events. Second, periods requiring external task focus were characterized by large task evoked changes in PD; in contrast, encoding failures were preceded by episodes of high spontaneous baseline PD activity. Finally, high spontaneous PD activity also occurred prior to only the slowest 20% of correct responses, suggesting high baseline PD indexes a distinct mode of cognitive functioning. Together, these data are consistent with the decoupling hypothesis, which suggests that the capacity for spontaneous cognitive activity depends upon minimizing disruptions from the external world.  相似文献   

19.
Synchronised activity, differing in phase in different populations of neurons, plays an important role in existing theories on the function of brain oscillations (e.g., temporal correlation hypothesis). A prerequisite for this synchronisation is that stimuli are capable of affecting (resetting) the phase of brain oscillations. Such a change in the phase of brain waves is also assumed to underlie the Berger effect: when observers open their eyes, the amplitude of EEG oscillations in the alpha band (8–13 Hz) decreases significantly. This finding is usually thought to involve a desynchronisation of activity in different neurons. For functional interpretations of brain oscillations in the visual system, it therefore seems to be crucial to find out whether or not the phase of brain oscillations can be affected by visual stimuli. To answer this question, we investigated whether alpha waves are generated by a linear or a nonlinear mechanism. If the mechanism is linear – in contrast to nonlinear ones – phases cannot be reset by a stimulus. It is shown that alpha-wave activity in the EEG comprises both linear and nonlinear components. The generation of alpha waves basically is a linear process and flash-evoked potentials are superimposed on ongoing alpha waves without resetting their phase. One nonlinear component is due to light adaptation, which contributes to the Berger effect. The results call into question theories about brain-wave function based on temporal correlation or event-related desynchronisation.Electronic Supplementary Material: Supplementary material is available for this article at  相似文献   

20.
Few studies have investigated physiologic and cognitive effects of "long-term" electromagnetic field (EMF) exposure in humans or animals. Our recent studies have provided initial insight into the long-term impact of adulthood EMF exposure (GSM, pulsed/modulated, 918 MHz, 0.25-1.05 W/kg) by showing 6+ months of daily EMF treatment protects against or reverses cognitive impairment in Alzheimer's transgenic (Tg) mice, while even having cognitive benefit to normal mice. Mechanistically, EMF-induced cognitive benefits involve suppression of brain β-amyloid (Aβ) aggregation/deposition in Tg mice and brain mitochondrial enhancement in both Tg and normal mice. The present study extends this work by showing that daily EMF treatment given to very old (21-27 month) Tg mice over a 2-month period reverses their very advanced brain Aβ aggregation/deposition. These very old Tg mice and their normal littermates together showed an increase in general memory function in the Y-maze task, although not in more complex tasks. Measurement of both body and brain temperature at intervals during the 2-month EMF treatment, as well as in a separate group of Tg mice during a 12-day treatment period, revealed no appreciable increases in brain temperature (and no/slight increases in body temperature) during EMF "ON" periods. Thus, the neuropathologic/cognitive benefits of EMF treatment occur without brain hyperthermia. Finally, regional cerebral blood flow in cerebral cortex was determined to be reduced in both Tg and normal mice after 2 months of EMF treatment, most probably through cerebrovascular constriction induced by freed/disaggregated Aβ (Tg mice) and slight body hyperthermia during "ON" periods. These results demonstrate that long-term EMF treatment can provide general cognitive benefit to very old Alzheimer's Tg mice and normal mice, as well as reversal of advanced Aβ neuropathology in Tg mice without brain heating. Results further underscore the potential for EMF treatment against AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号