首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ontogenetical development of the subcommissural organ (SCO) was investigated in chick embryos collected daily from the 1st to the 21st day in incubation. Some duck embryos, and adult chickens and ducks were also studied. Immunocytochemistry using an anti-Reissner's fiber (RF) serum as the primary antibody was the principal method used. In the chick embryos the events occurring at different days of incubation were: day 3 morphologically undifferentiated cells in the dorsal diencephalon displayed immunoreactive material (IRM); days 4 to 6 immunoreactive cells proliferated, formed a multilayered structure and developed processes which traversed the growing posterior commissure and ended at the brain surface; day 7 blood vessels penetrated the SCO, scarce hypendymal cells appeared, the first signs of ventricular release of IRM were noticed, appearance of IRM bound to cells of the floor of the Sylvius aqueduct; day 7 to 10 the number of apical granules and amount of extracellular IRM increased progressively; day 11 RF was observed along the Sylvian aqueduct, day 12 RF was present in the lumbar spinal cord; day 13 IRM on the aqueductal floor disappeared; days 10 to 21 hypendymal cells proliferated, developed processes and migrated dorsally, ependymal processes elongated and their endings covered the external limiting membrane. In adult specimens the ependymal cells lacked basal processes and the external membrane was contacted by hypendymal cells. the duck SCO appears to follow a similar pattern of development.  相似文献   

2.
Summary The paraventricular organ (PVO) and the posterior recess organ (PRO) of two elasmobranch species, the spiny dogfish,Squalus acanthias, and the skate,Raja radiata, were investigated by use of scanning and transmission electron microscopy and immunocytochemistry employing a series of primary antisera. The PVO and PRO contained four types of cerebrospinal fluid (CSF)-contacting neurons. One type was free of secretory granules and projected a dendrite-like process into the ventricle. The other three types were distinguished according to the size of their secretory granules. The ventricular extensions of these cells were filled with secretory granules. By means of immunocytochemistry three types of CSF-contacting neurons were observed in the PVO and PRO. Type I contained only serotonin; type 2 displayed only somatostatin; type 3 was endowed with both serotonin and somatostatin. Type I dominated in the PRO, whereas type 3 was the most frequent in the PVO. The latter cells appear to be the site of origin of a loose tract formed by serotonin- and somatostatinimmunoreactive fibers projecting from the PVO into the neuropil of the PRO. Compact bundles formed exclusively by serotonin fibers were also shown to extend between the PVO and PRO. The basal processes of the CSF-contacting neurons of the PRO penetrated into the underlying neuropil. This neuropil is rich in synapses and can be regarded as an integrative area to which the basal processes of the local CSF-contacting neurons, serotonin and somatostatin fibers from the PVO, and fibers containing immunoreactive thyrotropin-releasing hormone of unknown origin, support a conspicuous input. The present findings indicate that the PVO and PRO of elasmobranchs are functionally integrated structures.Dedicated to Professor Erik Dahl on the occasion of his 75th birthday.  相似文献   

3.
Summary The ontogenetical development of the subcommissural organ (SCO) was investigated in chick embryos collected daily from the 1st to the 21st day of incubation. Some duck embryos, and adult chickens and ducks were also studied. Immunocytochemistry using an anti-Reissner's fiber (RF) serum as the primary antibody was the principal method used.In the chick embryos the events occurring at different days of incubation were: day 3 morphologically undifferentiated cells in the dorsal diencephalon displayed immunoreactive material (IRM); days 4 to 6 immunoreactive cells proliferated, formed a multilayered structure and developed processes which traversed the growing posterior commissure and ended at the brain surface; day 7 i) blood vessels penetrated the SCO, ii) scarce hypendymal cells appeared, iii) the first signs of ventricular release of IRM were noticed, iv) appearance of IRM bound to cells of the floor of the Sylvius aqueduct; day 7 to 10 the number of apical granules and amount of extracellular IRM increased progressively; day 11 RF was observed along the Sylvian aqueduct; day 12 RF was present in the lumbar spinal cord; day 13 IRM on the aqueductal floor disappeared; days 10 to 21 i) hypendymal cells proliferated, developed processes and migrated dorsally, ii) ependymal processes elongated and their endings covered the external limiting membrane. In adult specimens the ependymal cells lacked basal processes and the external membrane was contacted by hypendymal cells. The duck SCO appears to follow a similar pattern of development.Supported by Grant I/60 935 from the Stiftung Volkswagenwerk, Federal Republic of Germany, and Grant RS-82-18 from the Dirección de Investigaciones, Universidad Austral de Chile. M.H. was recipient of a personal grant from JNO (29-5-54), which is gratefully acknowledged  相似文献   

4.
Summary This investigation is concerned with pineal organs of human embryos 60 to 150 days old. At every stage central nerve fibres enter the pineal organ by way of the habenular commissure, but are restricted to the pineal's proximal part. On about the 60th day of the development the sympathetic nervus conarii grows into the distal pole of the pineal organ from a dorso-caudal direction and plays the predominant part in the innervation of the pineal organ. After penetrating, it soon branches out and forms a network in the pineal tissue. Much later, not until the 5th embryonic month, sympathetic nerves appear accompanying the supplying vessels in the perivascular spaces. After a short time these nerves pierce the outer limiting basement membrane and penetrate the parenchyma. Towards the end of the 5th embryonic month the axons of the sympathetic nerves form varicosities containing clear and dense core vesicles. At this point large amounts of laminated granules appear primarily in cell processes, probably of pinealocytes. Isolated granules also occur in the varicosities of axons. The granules encountered here are most likely secretory granules.Dedicated to Professor Bargmann on his 65th birthday.  相似文献   

5.
The epithelial-mesenchymal transition (EMT) plays a crucial role in the differentiation of many tissues and organs. So far, an EMT was not detected in the development of the auditory organ. To determine whether an EMT may play a role in the morphogenesis of the auditory organ, we studied the spatial localization of several EMT markers, the cell-cell adhesion molecules and intermediate filament cytoskeletal proteins, in epithelium of the dorsal cochlea during development of the rat Corti organ from E18 (18th embryonic day) until P25 (25th postnatal day). We examined by confocal microscopy immunolabelings on cryosections of whole cochleae with antibodies anti-cytokeratins as well as with antibodies anti-vimentin, anti-E-cadherin and anti-β-catenin. Our results showed a partial loss of E-cadherin and β-catenin and a temporary appearance of vimentin in pillar cells and Deiters between P8 and P10. These observations suggest that a partial EMT might be involved in the remodelling of the Corti organ during the postnatal stages of development in rat.  相似文献   

6.
负子蝽的胚胎发育   总被引:1,自引:0,他引:1  
李顺珍 《昆虫学报》1994,37(2):171-177
负于蝽Sphaerodema rusticus Fabr.的胚胎发育,早期胚带面积大,呈多叶状,明显区分头,颚、胸、腹叶。发育过程需经历胚帝陷入、胚带隆起和胚胎反转三个明显的运动过程。中肠后原基先于前原基形成,并且前、后原基伸展方式不同,使中肠形成不同形态的前、后两部分,两部分的细胞分化亦有差异。神经系统在发育过程中神经节趋于较大程度愈合,腹部的神经节最终愈合为1个复合腹神经节,胸部的神经节也愈合为1个复合胸神经节。本文还总结了胚胎发育时期与卵粒大小的关系,讨论了负子蝽背器官解体的作用。  相似文献   

7.
Summary The development of sensory structures in the pineal organ of the chick was examined by means of scanning electron microscopy from embryonic day 10 through day 12 post-hatching. At embryonic day 10, the wall of the tubules within the pineal primordium is composed of cells with unspecialized luminal surface. Differentiation of sensory structures starts at embryonic day 12 when pinealocytes and supporting cells can be distinguished. Pinealocytes are recognized by virtue of an inner segment only rarely endowed with a cilium, whereas supporting cells exhibit numerous short microvilli. Further differentiation of the sensory apparatus is achieved by development of an oval-shaped, biconcave swelling at the tip of the cilium, 1×2 m in size, and a collar of long microvilli at the base of the inner segment. Membrane specializations of sensory cilia, however, were not detected. Since during embryonic life new tubules and follicles are continuously formed, all stages of differentiation of sensory structures are found in the chick pineal organ during the second half of the incubation period and the first two weeks after hatching. In 200-m-thick Vibratome sections of chick-embryo pineal organs cultured in medium BM 86 Wissler for periods up to 13 days the cytodifferentiation parallels the development in vivo. Using an organ-culture system the 24-h release of melatonin into the culture medium was measured by means of radioimmunoassay after solid-phase extraction. At embryonic day 10, the 24-h secretion of melatonin was at the lower range of detection of the RIA (5 pg). The rapid increase in 24-h secretion in melatonin until hatching (50 g) is approximated by an exponential curve.Preliminary results of this study were reported at the Versammlung der Anatomischen Gesellschaft in Lübeck, 1986 (Möller 1987). Supported by the Deutsche Forschungsgemeinschaft (MO234/9-2)  相似文献   

8.
Studies have been made on the properties of neuronal populations of the dorsal hyperstriatum of the forebrain in hens beginning from the 18th day incubation up to the 7th day after hatching, which were incubated and kept either in darkness or under periodic illumination. Among the investigated parameters of multicellular activity, mean frequency of the discharge activity was found to be most susceptible to the level of external light afferentation in ontogenesis. The discharge activity was more intense in the left hemisphere of chick embryos and chicks from illuminated group, which may be associated with asymmetrical visual afferentation resulting from embryonic position within the egg, and its modulating effect on synchronization processes in the adjacent neurones of the given structure.  相似文献   

9.
Our previous study demonstrated that the paraventricular organ (PVO) in the hypothalamus of the Japanese grass lizard (Takydromus tachydromoides) showed immunoreactivity against the light signal-transducing G-protein, transducin. This finding suggested that the PVO was a candidate for the deep-brain photoreceptor in this species. To understand functions of the PVO, we investigated distributions of transducin, serotonin, gonadotropin-releasing hormone (GnRH), and gonadotropin-inhibitory hormone (GnIH) in the lizard's brain. We immunohistochemically confirmed co-localization of transducin and serotonin in PVO neurons that showed structural characteristics of cerebrospinal fluid (CSF)-contacting neurons. GnRH-immunoreactive (ir) cells were localized in the posterior commissure and lateral hypothalamic area. Some of the serotonin-ir fibers extending from the PVO to the lateral hypothalamic area contacted the GnRH-ir cell bodies. GnIH-ir cells were localized in the nucleus accumbens, paraventricular nucleus, and upper medulla, and GnIH-ir fibers from the paraventricular nucleus contacted the lateral processes of serotonin-ir neurons in the PVO. In addition, we found that serotonin-ir fibers from the PVO extended to the suprachiasmatic nucleus (SCN), and the retrograde transport method confirmed the PVO projections to the SCN. These findings suggest that the PVO, by means of innervation mediated by serotonin, plays an important role in the regulation of pituitary function and the biological clock in the Japanese grass lizard.  相似文献   

10.
Corticotropin releasing factor (CRF) is present in the adult, as well as in the embryonic and postnatal rodent cerebellum. Further, the distribution of the type 1 CRF receptor has been described in adult and postnatal animals. The focus of the present study is to determine the distribution and cellular relationships of the type 1 CRF receptor (CRF-R1) during embryonic development of the cerebellum. Between embryonic day (E)11 and E12, CRF-R1 immunoreactive puncta are uniformly distributed in the ventricular zone, the site of origin of Purkinje cells, nuclear neurons, and GABAergic interneurons, as well as the germinal trigone, the birthplace of the precursors of granule cells. Between E13 and 18, the distribution of immunolabeled puncta decreases in both the ventricular zone and the germinal trigone and increases in the intermediate zone, as well as in the dorsal aspect of the cerebellar plate. Between E14 and 18, antibodies that label specific populations of cerebellar neurons were combined with the antibody for the receptor to determine the cellular elements that expressed CRF-R1. At E14, CRF-R1 immunoreactivity is co-localized in neurons immunolabeled with PAX-2, an antibody that is specific for GABAergic interneurons. These neurons continue to express CRF-R1 as they migrate dorsally toward the cerebellar surface. Between E16 and 18, Purkinje cells, immunolabeled with calbindin, near the dorsal surface of the cerebellum express CRF-R1 in their cell bodies and apical processes. CRF has been shown to have a depolarizing effect on adult and postnatal Purkinje cells. Further, CRF has been shown to contribute to excitability of hippocampal neurons during embryonic development by binding to CRF-R1; depolarization induced excitability appears to be critical for cell survival. The location of the type one CRF receptor and the presence of its primary ligand, CRF, in the germinal zones of the cerebellum and in migrating neurons suggest that this receptor/ligand interaction could be important in the regulation of neuronal survival through cellular mechanisms that lead to depolarization of embryonic cerebellar neurons.  相似文献   

11.
The maintenance and growth of the horny processes of the medaka, Oryzias latipes , were investigated in vitro by organ culture of the anal-fin. Processes were induced in adult females by oral administration of ethisterone. On this day, anal-fins were removed and cultured with in media containing androgen. Early processes elongated in these media during six to eight days of culture, though they degenerated in androgen-free control media. They developed to nearly the same degree as those in intact fins in medium 199 and CMRL-1066, while they degenerated to various extents in Eagle's MEM and Dulbecco's modified EM. These results suggest that scleroblasts maintain the mass and secrete the horny substance in vitro in the presence of androgen and essential nutrients. Early processes developed on the fifth day of treatment.  相似文献   

12.
13.
应用扫描电镜观察了鹌鹑(Coturnix coturnix)、红嘴鸥(Larus ridibundus)、黑翅长脚鹬(Himantopus himantopus)胚胎期小肠黏膜的形态变化。鹌鹑与红嘴鸥胚胎发育过程中,小肠黏膜形态结构可分为3个阶段。第一阶段为鹌鹑卵孵育第10 ~ 11天、红嘴鸥卵孵育第13 ~ 14天(相当于胚胎发育60%的阶段),小肠黏膜为山脊状纵行皱襞;第二阶段为鹌鹑卵孵育第12 ~ 13天、红嘴鸥卵孵育第15 ~ 16天(相当于胚胎发育70%的阶段),小肠黏膜为“W”形板状皱襞;第三阶段为鹌鹑卵孵育第14 ~ 17天、红嘴鸥卵孵育第17 ~ 22天(相当于胚胎发育到80% ~ 100%阶段),小肠黏膜为指状绒毛。黑翅长脚鹬卵孵育第10天(相当于胚胎发育到60%的阶段),小肠黏膜为山脊状纵行皱襞;从卵孵育第12天(相当于胚胎发育到70%的阶段)一直到孵出小肠黏膜均为“W”形板状皱襞。初步判断3种鸟小肠黏膜形态发生这种有规律的变化可能是鸟类对其祖先系统发育的重演。  相似文献   

14.
The developmental changes of embryonic membranes of a dipluran Lepidocampa weberi, with special reference to dorsal organ formation, are described in detail by light, scanning, and transmission electron microscopies. Newly differentiated germ band and serosa secrete the blastodermic cuticle at the entire egg surface beneath the chorion. Soon after, the serosal cells start to move dorsad. All the serosal cells finally concentrate at the dorsal side of the egg and form the dorsal organ. During their concentration, the serosal cells attenuate their cytoplasm to form filaments. The extensive area from which the serosa has receded is occupied by a second embryonic membrane, the amnion, which originates from the embryonic margin. The embryo and newly emerged amnion then secrete three fine cuticular layers, "cuticular lamellae I, II, and III," above which the filaments of the (developing) dorsal organ are situated. With the progression of definitive dorsal closure, the amnion reduces its extension, the dorsal organ is incorporated into the body cavity of the embryo, and the amnion and dorsal organ finally degenerate.The dorsal organ of diplurans is formed by the concentration of whole serosal cells, while that of collembolans is formed by the direct differentiation of a part of serosal cells. However, the dorsal organs of diplurans and collembolans closely resemble each other in major aspects, including that of ultrastructural features, and there is no doubt regarding their homology. The amnion, which has been regarded as being a characteristic of Ectognatha, also develops in the Diplura. This might suggest a closer affinity between the Diplura and Ectognatha than previously believed.  相似文献   

15.
A quantitative immunoblot assay was developed by using affinity-purified monospecific antibodies to quantitate levels of guanine nucleotide binding regulatory protein (G-protein) subunits in atria and ventricles during embryonic chicken cardiac development. The muscarinic acetylcholine receptor (mAChR) number was measured with [3H]quinuclidinyl benzilate. On day 10 of embryonic development (day 10E) there was no difference between the atrial and ventricular membrane concentrations of beta-subunit, G0 alpha subunit, or mAChR. The level of Gi alpha was found to be 44% greater in atria than in ventricles on day 10E. The atrial membrane concentration of beta-subunit increased 80% between day 13E and 15E, G0 alpha increased 46% between day 10E and 15E, mAChR increased 61% between day 10E and 12E, and Gi alpha decreased 34% between day 10E and 13E. The atrial levels of beta-subunit, G0 alpha, Gi alpha, and mAChR did not change further through day 20E. The ventricular membrane concentration of these proteins did not change between day 10E and 20E, except for that of G0 alpha, which increased 47% between day 15E and 20E. The atrial specific increase in beta-subunit correlated with a loss of GTP inhibition of basal adenylate cyclase activity. The difference in Gi alpha levels between atria and ventricles on day 10E correlated with a difference in carbachol sensitivity of atrial and ventricular basal adenylate cyclase activity. Thus, the levels of several components of the cholinergic neuroeffector pathway are regulated in a tissue-specific manner at a time that coincides with the onset of functional parasympathetic innervation of the embryonic chicken heart.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The distribution of acetylcholinesterase(AChE)-positive structures in the developing rat spinal cord was studied with AChE-histochemistry.AChE-positive perikarya were first seen on embryonic day 14(E14) in the ventrolateral portion of the spinal cord.From that time onward.AChE=containing cells appeared gradually in the intermediate gray,dorsal horn and lateral spinal nucleus of the spinal cord in a ventral-to-dorsal,and lateral-to-medial order.No obvious rostral-to-caudal sequence was found.At birth,the distribution pattern of AChE-positive perikarya was basically similar to that in adults.After birth a dramatic increase in the AChE staining intensity extended from postnatal day 5(P5) to postnatal day 21(P21),In addition,two phases of transient AChE staining were observed in the external surface of the dorsal horn from embryonic day 15(E15) to embryonic day 21(E21) and in the marginal layer from embryonic day 21(E21) to postnatal day 14(P14),respectively.  相似文献   

17.
18.
19.
Scanning electron microscopy and energy dispersive x-ray analysis (SEM/EDS) have been used to study the internal micromorphology of the frons plate in the Oriental hornet, Vespa orientalis. A conical shaped organ was described which is recessed into the frons plate and projects toward the interior of the acoustic box. The latter is located on the inner side of the frons plate. On the exterior of the conical region are observed aggregates containing Ca and Si, and a thin transparent membrane bearing a hole in its center. The innermost surface of the conical structure terminates bluntly as a convex lentiform tip, bearing a transparent oval-shaped window in its center. The conical organ, excepting the window, is enclosed in several layers of epithelium. The structure of this many-layered conical organ is highly complex; its numerous sub-structures and the possible role as a gravity sense organ are discussed. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Photoreceptor cell differentiation was investigated in a dissociated monolayer culture of chick embryonic retinas with electron microscopic immunohistochemistry. The antibody was raised against bovine rhodopsin purified on SDS-polyacrylamide gel electrophoresis. In the developing retina, immunoreactivity was first recognized on the 14th day of incubation and was localized on the plasma membrane of the growing inner segment. On the 16th day, immunoreactivity was observed on some differentiating outer segments but not on inner segments. In the culture from 6 1/2-day-old embryonic retinas, immunoreactivity was found on the 7th day of culturing on the plasma membrane of large-sized neurons. Electron microscopic observations confirmed that such stained cells showed reaction product on the plasma membrane, and that they displayed fine structures characteristic of intact photoreceptor cells. They had a number of microvillous processes and often one thick process, both of which were intensely stained. Outer segment formation, however, was not observed in the present monolayer culture. These results indicate that opsin synthesis and its transport to the plasma membrane begins prior to and probably independently of outer segment formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号