首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用紫色非硫细菌能在厌气光照下和好气黑暗下交替生长的特点和同位素~(99)Mo示踪,来探讨Rhodopseudomonas capsulata中Mo的积累与固氮酶合成的关系。 用硫酸铵和谷氨酸盐作为氮源,把Rps. capsulata置于厌气光照下生长。由于硫酸铵阻遏固氮酶,所以菌体内既无固氮酶活性也无~(99)Mo积累。而谷氨酸盐解遏固氮酶的合成,菌体则显示固氮活性并有~(99)Mo积累。 黑暗好气生长的Rps. capsulata菌体既无固氮活性,也没有~(99)Mo的积累。将这样的菌体转移到含~(99)Mo(无谷氨酸)的培养液进行光照,固氮酶活性迅速出现,同时有~(99)Mo的积累。在Rps. capsulata中钼的吸收与固氮酶的合成及活性是紧密偶联的。  相似文献   

2.
When Rhodopseudomonas capsulata B10 grows in media with different organic compounds, the hydrogenase activity estimated both by the evolution and uptake of H2 is lowest in cells taken from the middle of the exponential growth phase, and highest in cells from the beginning of the stationary phase. Cells grown in a medium containing malate have a higher hydrogenase activity than those cultivated in a medium with lactate or other compounds (900 and 20 nmoles of H2 per 1 min per 1 mg of protein, respectively). In the experiments with chloramphenicol (10(-5) M), organic compounds (not CO2) were shown to repress hydrogenase synthesis. When the cells were incubated in a medium without an organic substrate or in its presence, the exogenous H2 or H2 evolved as the result of nitrogenase action causes an increase in the activity of hydrogenase.  相似文献   

3.
The metabolic versatility of the purple nonsulfur photosynethetic bacterial permits the expression of either a phototrophic or a dark aerobic mode of growth. These organism also possess nitrogenase activity which may function under semiaerboic conditions. On the basis of these important properties, the light dependence of nitrogenase function and synthesis in Rhodopseudomonas capsulata was investigated. Nitrogenase activity was strictly dependent on light; no activity was observed in the dark, even when energy (ATP) was supplied by oxidative phosphorylation. It was concluded that the low-potential reducing agent required by the nitrogenase-catalyzed reaction could only be generated by a photochemical reaction. Nitrogenase biosynthesis was also largely dependent on light; however, a small amount of synthesis was observed in resting cells incubated in the dark. Resting cells prepared from dark-grown cultures synthesized nitrogenase at high rates upon illumination. The highest stability of nitrogenase in these resting cells was observed when suspensions were exposed to a diurnal pattern of illumination rather than continuous light. Although nitrogenase function and synthesis are closely coupled to photosynthetic activity, the biosyntheses of bacteriochorophyll and nitrogenase are independent of each other and are most probably subject to different regulatory mechanisms by light.  相似文献   

4.
The marine purple nonsulfur bacterium, Rhodopseudomonas sulfidophila, strain W4, was capable of photosynthetic growth on dinitrogen and malate. Higher growth rates were observed when either glutamate or ammonia replaced dinitrogen as nitrogen source and when bicarbonate was omitted from the culture medium. Although ammonia was released from cells growing on malate and N2, no nitrogenase activity could be detected unless -ketoglutarate was added to the culture medium. No nitrogenase activity was found in cultures grown in the presence of NH 4 + . In cultures grown on glutamate as nitrogen source, nitrogenase and hydrogenase activities were found to be 5.4 nmol C2H2 reduced · min-1 · mg-1 dry weight and 50 nmol methylene blue reduced · min-1 · mg-1 dry weight respectively. Such activities are significantly lower than those observed for other members of the Rhodospirillaceae e.g. Rhodopseudomonas capsulata. However, the hydrogenase activity would be sufficient to recycle all H2 produced by nitrogenase. It was indeed observed that growing cells did not evolve molecular hydrogen during photoheterotrophic growth and that H2 stimulated nitrogenase activity in resting cells of R. sulfidophila. The nitrogenase from this bacterium proved to be extremely sensitive to low concentrations of oxygen, half-inhibition occurring at between 1–1.5% O2 in the gas phase, depending on the bacterial concentration. Light was essential for nitrogenase activity. No activity was found during growth in the dark under extremely low oxygen concentrations (1–2% O2), which are still sufficient to support good growth. Resting cell suspensions prepared from such cultures were unable to reduce acetylene upon illumination. Optimum nitrogenase activities were broadly defined over the temperature range, 30–38°C, and between pH 6.9 and 8.0. The results are discussed in comparison with the non-marine purple nonsulfur bacterium, R. capsulata, which somewhat resembles R. sulfidophila.  相似文献   

5.
浑球红假单胞菌野生型菌株的氢酶表达被有机碳、氮底物所抑制。在光照和黑暗时,氧浓度变化对氢酶的作用不同,但高氧浓度都阻遏氢酶的表达。微量Ni~(2+)能专一性地促进氢酶活性,固氮酶的产氢也可以调节氢酶的表达水平。该野生菌株的GOGAT突变株缺乏固氮酶和氢酶活性,在加入谷氨酰胺合成酶抑制剂MSX后,固氮酶和氢酶以相关联的方式合成出来,固氮酶产生的氢看来诱导了氢酶的合成。然而在固氮酶不表达的情况下,外源氢也可诱导氢酶的合成。  相似文献   

6.
Hydrogenase activity of root nodules in the symbiotic association between Pisum sativum L. and Rhizobium leguminosarum was determined by incubating unexcised nodules with tritiated H2 and measuring tissue HTO. Hydrogenase activity saturated at 0.50 millimolar H2 and was not inhibited by the presence of 0.10 atmosphere C2H2, which prevented H2 evolution from nitrogenase. Total H2 production from nitogenase was estimated as net H2 evolution in air plus H2 exchange in 0.10 atmosphere C2H2. Although such an estimate of nitrogenase function may not be quantitatively exact, due to uncertain relationships between H2 exchange and H2 uptake activity of hydrogenase, differences observed in H2 exchange under various conditions represent an indication of changes in hydrogenase activity. Hydrogenase activity was lower in associations grown under higher photosynthetic photon flux densities and decreased relative to total H2 production by nitrogenase. Total H2 production and hydrogenase activity were maximum 28 days after planting. Thereafter, hydrogenase activity and H2 production declined, but the potential proportion of nitrogenase-produced H2 recovered by the uptake hydrogenase system increased. Of five R. leguminosarum strains tested two possessed hydrogenase activity. Strains which had the potential to reassimilate H2 had significantly higher rates of N2 reduction than those which did not exhibit hydrogenase activity.  相似文献   

7.
In vivo H2 evolution by Anabaena cylindrica Lemm. strain PCC 7122 grown in the presence of ammonia at low and high light intensities was studied. We found that after 2 h of anaerobic incubation, H2 evolution [at a rate of 0.5 μmol (mg dry weight)1 h−1] via reversible hydrogenase occurred in high light grown cells, while this kind of activity was not found in low light grown cells. H2 evolution was inhibited by 3-(3'. 4'-dichlorophenyl-1, 1-dimethylurea (DCMU). Illuminating the cells in the phycocyanin absorption region resulted in a higher rate of H2 evolution than illuminating the cells in the chlorophyll absorption region. The results indicate that reversible hydrogenase receives reducing equivalents from photosynthetic water photolysis and that both photosystem II and photosystem I participate in the H2 production. Hydrogenase activity was found in the soluble fraction after mild sonication in the case of low light grown cells. After this treatment high light grown cells retained 70% of their hydrogenase activity in the particulate fraction, but released it into the soluble fraction in the presence of 2% deoxycholic acid.
In vitro H2 evolution did not differ significantly in the low and high light grown cells. Hence, the differences in the in vivo H2 evolution reflect the different availability of endogenous reductants for hydrogenase in the two kinds of cells. On the basis of our results it is suggested that high light grown Anabaena cells eliminate part of the photosynthetically produced excess electrons via an induced reversible hydrogenase activity. This is the first report of H2 evolution associated with water photolysis and catalyzed by hydrogenase in cyanobacteria.  相似文献   

8.
Hydrogenase in Frankia KB5: expression of and relation to nitrogenase   总被引:1,自引:0,他引:1  
The localization and expression of the hydrogenase in free-living Frankia KB5 was investigated immunologically and by monitoring activity, focusing on its relationships with nitrogenase and H2. Immunological studies revealed that the large subunit of the hydrogenase in Frankia KB5 was modified post-translationally, and transferred into the membrane after processing. The large subunit was constitutively expressed and no correlation was found between hydrogenase activity and synthesis. Although H2 was not needed for induction of hydrogenase synthesis, exogenously added H2 triggered hydrogen uptake in medium containing nitrogen, i.e., in the hyphae. A correlation between nitrogenase activity and hydrogen uptake was found in cultures grown in media without nitrogen, but interestingly the two enzymes showed no co-regulation.  相似文献   

9.
Hydrogenase-derepressed (chemolithotrophic growth conditions) and heterotrophically grown cultures of Bradyrhizobium japonicum accumulated nickel about equally over a 3-h period. Both types of cultures accumulated nickel primarily in a form that was not exchangeable with NiCl2, and they accumulated much more Ni than would be needed for the Ni-containing hydrogenase. The nickel accumulated by heterotrophically incubated cultures could later be mobilized to allow active hydrogenase synthesis during derepression in the absence of nickel, while cells both grown and derepressed without nickel had low hydrogenase activities. The level of activity in cells grown with Ni and then derepressed without nickel was about the same as that in cultures derepressed in the presence of nickel. The Ni accumulated by heterotrophically grown cultures was associated principally with soluble proteins rather than particulate material, and this Ni was not lost upon dialyzing an extract containing the soluble proteins against either Ni-containing or EDTA-containing buffer. However, this Ni was lost upon pronase or low pH treatments. The soluble Ni-binding proteins were partially purified by gel filtration and DEAE chromatography. They were not antigenically related to hydrogenase peptides. Much of the 63Ni eluted as a single peak of 48 kilodaltons. Experiments involving immunoprecipitation of 63Ni-containing hydrogenase suggested that the stored source of Ni in heterotrophic cultures that could later be mobilized into hydrogenase resided in the nonexchangeable Ni-containing fraction rather than in loosely bound or ionic forms.  相似文献   

10.
Nickel accumulation and storage in Bradyrhizobium japonicum.   总被引:2,自引:0,他引:2       下载免费PDF全文
R J Maier  T D Pihl  L Stults    W Sray 《Applied microbiology》1990,56(6):1905-1911
Hydrogenase-derepressed (chemolithotrophic growth conditions) and heterotrophically grown cultures of Bradyrhizobium japonicum accumulated nickel about equally over a 3-h period. Both types of cultures accumulated nickel primarily in a form that was not exchangeable with NiCl2, and they accumulated much more Ni than would be needed for the Ni-containing hydrogenase. The nickel accumulated by heterotrophically incubated cultures could later be mobilized to allow active hydrogenase synthesis during derepression in the absence of nickel, while cells both grown and derepressed without nickel had low hydrogenase activities. The level of activity in cells grown with Ni and then derepressed without nickel was about the same as that in cultures derepressed in the presence of nickel. The Ni accumulated by heterotrophically grown cultures was associated principally with soluble proteins rather than particulate material, and this Ni was not lost upon dialyzing an extract containing the soluble proteins against either Ni-containing or EDTA-containing buffer. However, this Ni was lost upon pronase or low pH treatments. The soluble Ni-binding proteins were partially purified by gel filtration and DEAE chromatography. They were not antigenically related to hydrogenase peptides. Much of the 63Ni eluted as a single peak of 48 kilodaltons. Experiments involving immunoprecipitation of 63Ni-containing hydrogenase suggested that the stored source of Ni in heterotrophic cultures that could later be mobilized into hydrogenase resided in the nonexchangeable Ni-containing fraction rather than in loosely bound or ionic forms.  相似文献   

11.
Hydrogen evolution and consumption by cell and chromatophore suspensions of the photosynthetic bacterium Rhodopseudomonas capsulata was measured with a sensitive and specific mass spectrometric technique which directly monitors dissolved gases. H2 production by nitrogenase was inhibited by acetylene and restored by carbon monoxide. An H2 evolution activity coupled with HD formation and D2 uptake (H-D exchange) was unaffected by C2H2 and CO. Cultures lacking nitrogenase activity also exhibited H-D exchange activity, which was catalyzed by a membrane-bound hydrogenase present in the chromatophores of R. capsulata. A net hydrogen uptake, mediated by hydrogenase, was observed when electron acceptors such as CO2, O2, or ferricyanide were present in the medium.  相似文献   

12.
Photoproduction of H2 and activation of H2 for CO2 reduction (photoreduction) by Rhodopseudomonas capsulata are catalyzed by different enzyme systems. Formation of H2 from organic compounds is mediated by nitrogenase and is nto inhibited by an atmosphere of 99% H2. Cells grown photoheterotrophically on C4 dicarboxylic acids (with glutamate as N source) evolve H2 from the C4 acids and also from lactate and pyruvate; cells grown on C3 carbon sources, however, are inactive with the C4 acids, presumably because they lack inducible transport systems. Ammonia is known to inhibit N2 fixation by photosynthetic bacteria, and it also effectively prevents photoproduction of H2; these effects are due to inhibition and, in part, inactivation of nitrogenase. Biosynthesis of the latter, as measured by both H2 production and acetylene reduction assays, is markedly increased when cells are grown at high light intensity; synthesis of the photoreduction system, on the other hand, is not appreciably influenced by light intensity during photoheterotrophic growth. The photoreduction activity of cells grown on lactate + glutamate (which contain active nitrogenase) is greatly activated by NH4+, but this effect is not observed in cells grown with NH4+ as N source (nitrogenase repressed) or in a Nif- mutant that is unable to produce H2. Lactate, malate, and succinate, which are readily used as growth substrates by R. capsulata and are excellent H donors for photoproduction of H2, abolish photoreduction activity. The physiological significances of this phenomenon and of the reciprocal regulatory effects of NH4+ on H2 production and photoreduction are discussed.  相似文献   

13.
Hydrogenase activity in cells of the nitrogen-fixing methane-oxidizing bacterium strain 41 of the Methylosinus type increased markedly when growth was dependent upon the fixation of gaseous nitrogen. A direct relationship may exist between hydrogenase and nitrogenase in this bacterium. Acetylene reduction was supported by the presence of hydrogen gas.  相似文献   

14.
Heterocyst-free (NH4+-grown) cultures of the cyanobacterium Anabaena variabilis produce a hydrogenase which is reversibly inhibited by light and O2. White or red light at an intensity of 5,000 lx inhibited greater than 95% of the activity. Oxygen at concentrations as low as 0.5% inhibited more than 85% of the hydrogenase in the vegetative cells of CO2-NH4+-grown cultures. The vegatative cell hydrogenase is also sensitive to strong oxidants like ferricyanide. In the presence of strong reductants like S2O4(2-), hydrogenase activity was not inhibited by light. However, hydrogenase activity in the heterocysts was insensitive to both light (greater than 5,000 lx) and O2 (10%). Heterocysts and light-insensitive hydrogenase activity appear simultaneously during differentiation of the vegetative cells into heterocysts (an NH4+-grown culture transferred to NH4+-free, N2-containing medium). This light-insensitive hydrogenase activity was detected several hours before the induction of nitrogenase activity. These results suggest a mode of regulation of hydrogenase in the vegetative cells of A. variabilis that is similar to "redox control" of hydrogenase and other "anaerobic" proteins in enteric bacteria like Escherichia coli.  相似文献   

15.
E. coli K10 was found to grow anaerobically on molecular hydrogen by reducing nitrate, fumarate, and trimethylamine N-oxide when peptone was added to the culture medium. Molar growth yields based on consumed hydrogen estimated from the amounts of reduction products were all 7.8 g cells/mol, suggesting that 1 mol of ATP was produced in the oxidation of 1 mol of hydrogen. Hydrogenase activity measured in terms of hydrogen evolution was several times higher in cells grown on glucose than in cells grown on hydrogen in the presence of fumarate and trimethylamine N-oxide, while hydrogenase activity measured in terms of hydrogen uptake was unchanged in both cases. The ratio of hydrogenase activities measured in terms of hydrogen uptake and evolution was also high in the extract and centrifugal fractions from cells grown in hydrogen. The soluble fraction and trypsin digest of the precipitate at 100,000 X g were subjected to polyacrylamide disc gel electrophoresis and hydrogenase bands were stained by reduction of benzyl viologen with hydrogen and by oxidation of reduced methyl viologen. The resulting patterns suggest that multiple forms of hydrogenase are present and that the amounts of forms functioning in hydrogen evolution were greatly decresed in cells grown on hydrogen in the presence of acceptors.  相似文献   

16.
Two pathways of hydrogen uptake in Nostoc muscorum are apparent using either oxygen or nitrogen as electron acceptor. Hydrogen uptake (under argon with some oxygen as electron acceptor assayed in the dark; oxyhydrogen reaction) is found to be more active in dense, light-limited cultures than in thin cultures when light is not limiting. Addition of bicarbonate inhibits this hydrogen uptake, because photosynthesis is stimulated. In a cell-free hydrogenase assay, a 10-fold increase of the activity can be measured, after the cells having been kept under lightlimiting conditions. After incubation under light-saturating conditions, no hydrogen uptake is found, when filaments are assayed under argon plus some oxygen. Assaying these cells under a nitrogen atmosphere, a strong hydrogen uptake occurs. The corresponding cell-free hydrogenase assay exhibits low hydrogenase activity. Furthermore, the hydrogen uptake by intact filaments under nitrogen in the light apparently is correlated with nitrogenase activity. These studies give evidence that, under certain physiological conditions, hydrogen uptake of heterocysts proceeds directly via nitrogenase, with no hydrogenase involved.Abbreviations Chl chlorophyll - DCMU (diuron) 3-3,4-dichlorophenyl)-1,1-dimethylurea - pev packed cell volume  相似文献   

17.
H2 uptake and H2-supported O2 uptake were measured in N2-fixing cultures of Frankia strain ArI3 isolated from root nodules of Alnus rubra. H2 uptake by intact cells was O2 dependent and maximum rates were observed at ambient O2 concentrations. No hydrogenase activity could be detected in NH4+-grown, undifferentiated filaments cultured aerobically indicating that uptake hydrogenase activity was associated with the vesicles, the cellular site of nitrogen fixation in Frankia. Hydrogenase activity was inhibited by acetylene but inhibition could be alleviated by pretreatment with H2. H2 stimulated acetylene reduction at supraoptimal but not suboptimal O2 concentrations. These results suggest that uptake hydrogenase activity in ArI3 may play a role in O2 protection of nitrogenase, especially under conditions of carbon limitation.  相似文献   

18.
D M Pederson  A Daday  G D Smith 《Biochimie》1986,68(1):113-120
The hydrogenase activities of the heterocystous cyanobacteria Anabaena cylindrica and Mastigocladus laminosus are nickel dependent, based on their inability to consume hydrogen with various electron acceptors or produce hydrogen with dithionite-reduced methyl viologen, after growth in nickel-depleted medium. Upon addition of nickel ions to nickel-deficient cultures of A. cylindrica, the hydrogenase activity recovered in a manner which was protein synthesis-dependent, the recovery being inhibited by chloramphenicol. We have used the nickel dependence of the hydrogenase as a probe of the possible roles of H2 consumption in enhancing nitrogen fixation, and particularly for protecting nitrogenase against oxygen inhibition. Although at the usual growth temperatures (25 degrees for A. cylindrica and 40 degrees for M. laminosus), the cells consume H2 vigorously in an oxyhydrogen reaction after growth in the presence of nickel ions, we have not found that the reaction confers any significant additional protection of nitrogenase, either at aerobic pO2 (for both organisms) or at elevated pO2 (for A. cylindrica). However, at elevated temperatures (e.g., 40 degrees for A. cylindrica and 48 degrees for M. laminosus) a definite protective effect was observed. At these temperatures both organisms rapidly lost acetylene reduction activity under aerobic conditions. When hydrogen gas (10%) was present, the cells retained approximately 50% of the nitrogenase activity observed under anaerobic conditions (argon gas phase). No such protection by hydrogen gas was observed with nickel-deficient cells. Studies with cell-free extracts of A. cylindrica showed that the predominant effect of temperature was not due to thermal inactivation of nitrogenase.  相似文献   

19.
In contrast to wild-type cells, glutamine auxotrophs of the photosynthetic bacterium Rhodopseudomonas capsulata synthesize nitrogenase, produce H2 (catalyzed by nitrogenase), and continue to reduce dinitrogen to ammonia in the presence of exogenous NH4+. The glutamine synthetase activity of such mutants is less than 2% of that observed in the wild type. It appears that glutamine synthetase plays a significant role in regulation of nitrogenase synthesis in R. capsulata.  相似文献   

20.
Two uptake hydrogenases were found in the obligate methanotroph Methylosinus trichosporium OB3b; one was constitutive, and a second was induced by H2. Both hydrogenases could be assayed by measuring methylene blue reduction anaerobically or by coupling their activity to nitrogenase acetylene reduction activity in vivo in an O2-dependent reaction. The H2 concentration for half-maximal activity of the inducible and constitutive hydrogenases in both assays was 0.01 and 0.5 bar (1 and 50 kPa), respectively, making it easy to distinguish these enzymes from one another both in vivo and in vitro. Hydrogen uptake was shown to be coupled to ATP synthesis in methane-starved cells. Methane, methanol, formate, succinate, and glucose all repressed the H2-mediated synthesis of the inducible hydrogenase. Furthermore, this enzyme was only expressed in N-starved cultures and was repressed by NH4+ and NO3-; synthesis of the constitutive hydrogenase was not affected by excess N in the growth medium. In nickel-free, EDTA-containing medium, the activities of these two enzymes were negligible; however, both enzyme activities appeared rapidly following the addition of nickel to the culture. Chloramphenicol, when added along with nickel, had no effect on the rapid appearance of either the constitutive or inducible activity, indicating that nickel is not required for synthesis of the hydrogenase apoproteins. These observations all suggest that these hydrogenases are nickel-containing enzymes. Finally, both hydrogenases were soluble and could be fractionated by 20% ammonium sulfate; the constitutive enzyme remained in the supernatant solution, while the inducible enzyme was precipitated under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号