首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
T J Baranski  P L Faust  S Kornfeld 《Cell》1990,63(2):281-291
Lysosomal enzymes contain a common protein determinant that is recognized by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the initial enzyme in the formation of mannose 6-phosphate residues. To identify this protein determinant, we constructed chimeric molecules between two aspartyl proteases: cathepsin D, a lysosomal enzyme, and pepsinogen, a secretory protein. When expressed in Xenopus oocytes, the oligosaccharides of cathepsin D were efficiently phosphorylated, whereas the oligosaccharides of a glycosylated form of pepsinogen were not phosphorylated. The combined substitution of two noncontinuous sequences of cathepsin D (lysine 203 and amino acids 265-292) into the analogous positions of glycopepsinogen resulted in phosphorylation of the oligosaccharides of the expressed chimeric molecule. These two sequences are in direct apposition on the surface of the molecule, indicating that amino acids from different regions come together in three-dimensional space to form this recognition domain. Other regions of cathepsin D were identified that may be components of a more extensive recognition marker.  相似文献   

2.
In Dictyostelium discoideum, the lysosomal enzyme alpha-mannosidase is first synthesized as an N-glycosylated precursor of Mr 140,000. After a 20-30-min lag period, up to 30% of the precursor molecules are rapidly secreted, whereas the rest remain cellular and are proteolytically processed (t 1/2 = 8 min) to mature subunits of Mr 58,000 and 60,000. The secreted precursor is modified more extensively than the cellular form, as is revealed by differences in size, charge, and sensitivity to endoglycosidase H. Subcellular fractionation has shown that, following synthesis in the rough endoplasmic reticulum, the precursor is transported to a low density membrane fraction that contains Golgi membranes. Proteolytic processing takes place in these vesicles, since newly cleaved mature enzyme, but no precursor, co-fractionates with lysosomes. Under conditions that disrupt vesicular membranes, the precursor remains associated with the membrane fraction, whereas the newly processed mature enzyme is soluble. Proteolytic cleavage of the precursor thus coincides with the release of the mature enzyme into the lumen of a lysosomal compartment. These findings suggest a possible mechanism for lysosomal targeting that involves the specific association of enzyme precursors with Golgi membranes.  相似文献   

3.
Proliferation of Schwann cells is one of the first events that occurs after contact with a growing axon. To further define the distribution and properties of this axonal mitogen, we have (a) cocultured cerebellar granule cells, which lack glial ensheathment in vivo with Schwann cells; and (b) exposed Schwann cell cultures to isolated granule cell membranes. Schwann cells cocultured with granule cells had a 30-fold increase in the labeling index over Schwann cells cultured alone, suggesting that the mitogen is located on the granule cell surface. Inhibition of granule cell proteoglycan synthesis caused a decrease in the granule cells' ability to stimulate Schwann cell proliferation. Membranes isolated from cerebellar granule cells when added to Schwann cell cultures caused a 45-fold stimulation in [3H]thymidine incorporation. The granule cell mitogenic signal was heat and trypsin sensitive and did not require lysosomal processing by Schwann cells to elicit its proliferative effect. The ability of granule cells and their isolated membranes to stimulate Schwann cell proliferation suggests that the mitogenic signal for Schwann cells is a ubiquitous factor present on all axons regardless of their ultimate state of glial ensheathment.  相似文献   

4.
In Dictyostelium discoideum the lysosomal enzyme alpha-mannosidase is initially synthesized in vivo as a 140,000 Mr protein which is subsequently processed into two mature acidic glycoproteins of 60,000 and 58,000 Mr. To investigate the initial events involved in the synthesis of this protein, mRNA isolated from growing cells was translated in vitro and the resulting protein products were immunoprecipitated with antibodies prepared against the purified enzyme. Messenger RNA prepared from membrane-bound but not free polysomes directed the synthesis of an immunoprecipitable 120K protein that was identified as the alpha-mannosidase primary translation product by a variety of criteria. Translation in vitro in the presence of dog pancreas microsomes resulted in the conversion of the 120K primary translation product to a 140K form. This 140K species was not accessible to added trypsin under conditions preserving membrane integrity, suggesting it is sequestered in the lumen of the endoplasmic reticulum following synthesis. Treatment of either the in vitro modified or cellular 140K alpha-mannosidase precursors with endoglycosidase H resulted in the appearance of proteins 2K larger than the primary translation product. The pulse-labeled cellular precursor and the in vitro processed form have similar isoelectric points as revealed by two-dimensional gel electrophoresis. These results imply that the precursor is N-glycosylated in the endoplasmic reticulum possibly without removal of the signal sequence and that the majority of acidic modifications are added late in the post-translational pathway.  相似文献   

5.
Luminal acidification is important for the maturation of secretory granules, yet little is known regarding the regulation of pH within them. A pH-sensitive green fluorescent protein (EGFP) was targeted to secretory granules in RIN1046-38 insulinoma cells by using a construct in which the EGFP gene was preceded by the nucleotide sequence for human growth hormone. Stimulatory levels of glucose doubled EGFP secretion from cell cultures, and potentiators of glucose-induced insulin secretion enhanced EGFP release. Thus this targeted EGFP is useful for population measurements of secretion. However, less than ~4% of total cell EGFP was released after 1.5 h of stimulation. Consequently, when analyzed in single cells, fluorescence of the targeted EGFP acts as an indicator of pH within secretory granules. Glucose elicited a decrease in granule pH, whereas inhibitors of the V-type H(+)-ATPase increased pH and blocked the glucose effect. Granule pH also was modified by effectors of the protein kinase A pathway, with activation eliciting granule alkalinization, suggesting that potentiation of peptide release by cAMP may involve regulated changes in secretory granule pH.  相似文献   

6.
To explain the different secretion kinetics of lysosomal enzymes in Dictyostelium discoideum, previous investigators have hypothesized the existence of a heterogeneous population of lysosomes containing either the enzyme acid phosphatase or other hydrolase enzymes. This proposal predicts that at least two targeting mechanisms exist for lysosomal enzymes in this organism. To begin to investigate this possibility, the transport, processing, and targeting of acid phosphatase was studied by using a combination of radiolabel pulse-chase procedures, subcellular fractionations, and indirect immunofluorescence microscopy. Acid phosphatase was initially synthesized in axenically growing cells as a 56-kDa precursor polypeptide that was proteolytically processed after 20 min to a 55-kDa mature protein. This enzyme was rapidly transported from the endoplasmic reticulum to Golgi complex (halftime of 3 min) as measured by the acquisition of resistance to the enzyme endoglycosidase H. Furthermore, Percoll gradient fractionations indicated that radiolabeled forms of acid phosphatase reached dense lysosomal vesicles at about the same time as final processing was occurring. Proper sorting of acid phosphatase in D. discoideum apparently was not critically dependent on low intravacuolar pH since the addition of ammonium chloride did not stimulate the missorting and secretion of acid phosphatase. These results are very similar to previous observations concerning other Dictyostelium lysosomal enzymes. Consistent with the existence of a heterogeneus population of lysosomes, the percentage of radiolabeled acid phosphatase secreted 4 h into a chase period was 15-fold lower as compared with another lysosomal enzyme, beta-glucosidase. However, acid phosphatase, alpha-mannosidase, and beta-glucosidase were all predominantly colocalized as determined by indirect immunofluorescence, which for the first time demonstrates the homogeneous nature of the lysosomal system in D. discoideum. Taken together these results suggest that the processing and transport of acid phosphatase may be similar in nature to the glycosidases. However, the different kinetics of secretion of acid phosphatase versus the colocalized glycosidase enzymes suggests that an undefined mechanism operates to distinguish these classes of enzymes at a step after localization to lysosomes but prior to secretion.  相似文献   

7.
I Lundquist  R L?vdahl 《Enzyme》1977,22(6):385-390
The pattern of lysosomal enzyme activities in isolated pancreatic islets was studied in 3 different strains of mice, NMRI, CBA, and C-57, and related to the in vivo insulin release following injection of the insulin scretagogues glucose and carbachol. It was observed that the relative specific activities among the islet enzymes studied did not show the same pattern in the different strains although beta-gluc-ronidase always displayed the lowest activity. Comparison between the strains revealed that acid phosphatase activity was of the same magnitude in all 3 strains. Islet activities of acid amyloglucosidase, beta-glucuronidase, and N-acetylglucosaminidase, however, were largest in NMRI, intermediate in CBA, and lowest in C-57. This activity pattern roughly correlated with the insulin secretory response to an intravenous injection of glucose, whereas insulin release induced by the cholinergic agonist carbachol was of similar magnitude in all strains.  相似文献   

8.
Application of the laser-based technique of photon correlation spectroscopy to anin vitro study of the ionic stability and interaction kinetics of zymogen granules isolated from rat exocrine pancreas is described here. In addition the separation from pancreatic acinar cell cytosol of a factor which stabilizes isolated zymogen granules and inhibits cation-induced granule aggregation is outlined. The basis of this action and the significance of the cytosolic inhibitory factor in the regulation of granule mobility and exocytosisin vivo is discussed.  相似文献   

9.
Mammalian cell lysosomal enzymes or phosphorylated oligosaccharides derived from them are endocytosed by a phosphomannosyl receptor (PMR) found on the surface of fibroblasts. Various studies suggest that 2 residues of Man-6-P in phosphomonoester linkage but not diester linkage (PDE) are essential for a high rate of uptake. The lysosomal enzymes of the slime mold Dictyostelium discoideum are also recognized by the PMR on these cells; however, none of the oligosaccharides from these enzymes contain 2 phosphomonoesters. Instead, most contain multiple sulfate esters and 2 residues of Man-6-P in an unusual PDE linkage. In this study I have tried to account for the unexpected highly efficient uptake of the slime mold enzymes. The results show that nearly all of the alpha-mannosidase molecules contain the oligosaccharides required for uptake, and that each tetrameric, holoenzyme molecule has sufficient carbohydrate for an average of 10 Man8GlcNAc2 oligosaccharides. None of the oligosaccharides or glycopeptides from the lysosomal enzymes bind to an immobilized PMR, but those with 2 PDE show slight interaction. Competition of 125I-beta-glucosidase uptake by various carbohydrate-containing fractions indicates that the best inhibitors are those with 2 PDE, either with or without sulfate esters. Furthermore, the uptake of a lysosomal enzyme isolated from a mutant strain (modA), which produces oligosaccharides with only 1 but not 2 PDE, is about 10-fold less than the uptake of wild-type enzyme which has predominantly 2 PDE. Complete denaturation of 125I-labeled wild-type beta-glucosidase in sodium dodecyl sulfate/dithiothreitol also reduces its uptake by about 10-fold. Taken together, these results suggest that the interactions of multiple, weakly binding oligosaccharides, especially those with 2 PDE, are important for the high rate of uptake of the slime mold enzymes. The conformation of the protein may be important in orienting the oligosaccharides in a favorable position for binding to the PMR.  相似文献   

10.
Formation of secretion granules in regulated secretory cells involves packaging a subject of proteins undergoing intracellular transport into specific vesicular carriers that function in stimulus-dependent exocytosis. Recent findings suggest that immature granules are a site of passive sorting, involving condensation of regulated secretory proteins. Proteins that are not condensed are stored to a lesser degree and are enriched in unstimulated, constitutive-like secretion. While these observations have helped to distinguish possible mechanisms of secretory protein sorting, there are only recent hints about the sorting processes that may be required to create the regulated secretory carrier membranes.  相似文献   

11.
Protein secretion from acinar cells of the pancreas and parotid glands is controlled by G-protein coupled receptor activation and generation of the cellular messengers Ca2+, diacylglycerol and cAMP. Secretory granule (SG) exocytosis shares some common characteristics with nerve, neuroendocrine and endocrine cells which are regulated mainly by elevated cell Ca2+. However, in addition to diverse signaling pathways, acinar cells have large ∼1 μm diameter SGs (∼30 fold larger diameter than synaptic vesicles), respond to stimulation at slower rates (seconds versus milliseconds), demonstrate significant constitutive secretion, and in isolated acini, undergo sequential compound SG–SG exocytosis at the apical membrane. Exocytosis proceeds as an initial rapid phase that peaks and declines over 3 min followed by a prolonged phase that decays to near basal levels over 20–30 min. Studies indicate the early phase is triggered by Ca2+ and involves the SG proteins VAMP2 (vesicle associated membrane protein2), Ca2+-sensing protein synatotagmin 1 (syt1) and the accessory protein complexin 2. The molecular details for regulation of VAMP8-mediated SG exocytosis and the prolonged phase of secretion are still emerging. Here we review the known regulatory molecules that impact the sequential exocytic process of SG tethering, docking, priming and fusion in acinar cells.  相似文献   

12.
The recently established in vitro assay of condensation-sorting of pancreatic enzymes to the zymogen granule membrane (ZGM) (Dartsch, H., R. Kleene, H. F. Kern: In vitro condensation-sorting of enzyme proteins isolated from rat pancreatic acinar cells. Eur. J. Cell Biol. 75, 211-222 (1998)) was used to study the involvement of a novel secretory lectin, ZG16p, in the binding of aggregated proteins to ZGM. In isolated zymogen granules the lectin is predominantly associated with the membrane and can be removed to a large extent by bicarbonate treatment at pH 11.5. In the in vitro assay in which secretory proteins aggregate at pH 5.9 but only those bound to ZGM are sedimented into the pellet, ZG16p is significantly enriched in this pellet fraction, shown both by biochemical and fine structural analysis. Pretreatment of ZGM with anti-ZG16p antibody before their addition to the assay inhibits binding to the membrane by about 50%. Similarly, removal of ZG16p or prevention of its interaction with glycosaminoglycans (GAGs) in the submembranous matrix of ZGM by sodium bicarbonate treatment or chondroitinase digestion of ZGM also inhibits the binding efficiency of secretory proteins to ZGM to about the same extent. We conclude that ZG16p may act as a linker molecule between the submembranous matrix on the luminal side of ZGM and aggregated secretory proteins during granule formation in the TGN.  相似文献   

13.
The mutant strain of Dictyostelium discoideum, HMW-437, contains a mutation in the structural gene coding for the lysosomal enzyme alpha-mannosidase. Unlike the wild type strain, Ax3, this strain fails to proteolytically process or secrete the 140,000-dalton alpha-mannosidase precursor. The level of sulfate incorporation into the mutant precursor was significantly lower when compared to the wild type precursor. In addition, the mutant precursor was entirely sensitive to endoglycosidase H. Subcellular fractionation of HMW-437 membranes indicated that the majority of the alpha-mannosidase precursor sedimented in a region of the gradient corresponding to the rough endoplasmic reticulum. This accumulation within the rough endoplasmic reticulum did not appear to result from gross conformational changes which lead to aggregation. Trypsin digestion of radioactively labeled Ax3 and HMW-437 precursors demonstrated that there were differences in susceptibility to protease cleavage between the wild type and mutant alpha-mannosidase precursor molecules, suggesting that a minor conformational change could contribute to the accumulation of the mutant precursor inside the endoplasmic reticulum.  相似文献   

14.
《The Journal of cell biology》1989,109(4):1445-1456
A mutant strain of Dictyostelium discoideum, HMW570, oversecretes several lysosomal enzyme activities during growth. Using a radiolabel pulse-chase protocol, we followed the synthesis and secretion of two of these enzymes, alpha-mannosidase and beta-glucosidase. A few hours into the chase period, HMW570 had secreted 95% of its radiolabeled alpha- mannosidase and 86% of its radiolabeled beta-glucosidase as precursor polypeptides compared to the secretion of less than 10% of these forms from wild-type cells. Neither alpha-mannosidase nor beta-glucosidase in HMW570 were ever found in the lysosomal fractions of sucrose gradients consistent with HMW570 being defective in lysosomal enzyme targeting. Also, both alpha-mannosidase and beta-glucosidase precursors in the mutant strain were membrane associated as previously observed for wild- type precursors, indicating membrane association is not sufficient for lysosomal enzyme targeting. Hypersecretion of the alpha-mannosidase precursor by HMW570 was not accompanied by major alterations in N- linked oligosaccharides such as size, charge, and ratio of sulfate and phosphate esters. However, HMW570 was defective in endocytosis. A fluid phase marker, [3H]dextran, accumulated in the mutant at one-half of the rate of wild-type cells and to only one-half the normal concentration. Fractionation of cellular organelles on self-forming Percoll gradients revealed that the majority of the fluid-phase marker resided in compartments in mutant cells with a density characteristic of endosomes. In contrast, in wild-type cells [3H]dextran was predominantly located in vesicles with a density identical to secondary lysosomes. Furthermore, the residual lysosomal enzyme activity in the mutant accumulated in endosomal-like vesicles. Thus, the mutation in HMW570 may be in a gene required for both the generation of dense secondary lysosomes and the sorting of lysosomal hydrolases.  相似文献   

15.
alpha-mannosidases I and II (Man I and II) are resident enzymes of the Golgi complex involved in oligosaccharide processing during N-linked glycoprotein biosynthesis that are widely considered to be markers of the cis- and medial-Golgi compartments, respectively. We have investigated the distribution of these enzymes in several cell types by immunofluorescence and immunoelectron microscopy. Man II was most commonly found in medial- and/or trans- cisternae but showed cell type- dependent variations in intra-Golgi distribution. It was variously localized to either medial (NRK and CHO cells), both medial and trans (pancreatic acinar cells, enterocytes), or trans- (goblet cells) cisternae, or distributed across the entire Golgi stack (hepatocytes and some enterocytes). The distribution of Man I largely coincided with that of Man II in that it was detected primarily in medial- and trans- cisternae. It also showed cell type dependent variations in its intra- Golgi distribution. Man I and Man II were also detected within secretory granules and at the cell surface of some cell types (enterocytes, pancreatic acinar cells, goblet cells). In the case of Man II, cell surface staining was shown not to be due to antibody cross- reactivity with oligosaccharide epitopes. These results indicate that the distribution of Man I and Man II within the Golgi stack of a given cell type overlaps considerably, and their distribution from one cell type to another is more variable and less compartmentalized than previously assumed.  相似文献   

16.
During development in Dictyostelium discoideum, several lysosomal glycosidases undergo changes in post-translational modification that are thought to involve differences in the extent of sulfation or phosphorylation, and appear to be required for the maintenance of cellular enzyme activity late in development. We have used monoclonal antibodies specific to the lysosomal enzyme alpha-mannosidase-1 to study the major late (12 hr) developmental change in the modification system. Pulse-chase experiments performed both early and late in development reveal that the substrate for the late form of modification is restricted to newly synthesized alpha-mannosidase-1 precursor protein. We have identified one modification difference between the two developmentally distinct isozymes of alpha-mannosidase-1: 35SO4 pulse-chase data show that the newly synthesized "late" enzyme precursor is significantly undersulfated in comparison with the enzyme synthesized early in development. This apparent lack of sulfation is associated with the lack of acquisition of endoglycosidase H resistance. By contrast, an aggregation-deficient mutant, which is defective with regard to the accumulation of alpha-mannosidase-1 activity late in development, synthesizes the "early" sulfated form of the enzyme throughout development. We conclude that the late developmental change in post-translational modification specifically involves one of the biochemical steps in which the N-linked oligosaccharide side chains of the newly synthesized alpha-mannosidase-1 precursor are modified by sulfation.  相似文献   

17.
This paper has two purposes. The first is to review the past studies on the structure, biosynthesis, and immunological properties of a class of glycoproteins, the lysosomal enzymes, in Dictyostelium discoideum. The second purpose is to present new data on the analysis of mutant strains altered in the biosynthesis of the lipid-linked precursor of N-linked oligosaccharides, and on the characterization of new carbohydrate antigenic determinants found on multiple proteins in Dictyostelium. We will also show how a combination of genetic, biochemical and immunochemical approaches have been used to unravel a portion of the glycosylation pathway in Dictyostelium.The long-term goal of these studies is to use Dictyostelium discoideum as a model system to understand the functions of a variety of glycoconjugates in a multicellular organism. The existence of a large number of mutant strains which are altered in a variety of cellular functions, development and the posttranslational modification of multiple proteins, offers a great opportunity to explore this area.  相似文献   

18.
Purified human C3a was iodinated (125I-C3a) and used to study the interaction of labeled peptide with rat peritoneal mast cells (RMC). Cellular binding of 125I-C3a occurred within 30 sec, followed by a rapid dissociation from the cell. Both the binding of 125I-C3a and the rate of dissociation from the cell were temperature dependent. At 0 degrees C, the binding of 125I-C3a was increased and the rate of dissociation reduced, as compared with 37 degrees C. Once 125I-C3a was exposed to RMC, it lost the ability to rebind to a second batch of RMC. Analysis of the supernatants by trichloroacetic acid (TCA) precipitation and electrophoresis in sodium dodecyl sulfate polyacrylamide gels (SDS PAGE) revealed a decrease in the fraction of 125I precipitable by TCA and the appearance of 125I-C3a cleavage fragments. Pretreatment of RMC with enzyme inhibitors specific for chymotrypsin, but not trypsin, abrogated the degradation of 125I-C3a. Treatment of RMC bearing 125I-C3a with bis (sulfosuccinimidyl) suberate (BS3) covalently cross-linked the 125I-C3a to chymase, the predominant enzyme found in the secretory granules. Antiserum directed against chymase precipitated 125I-C3a from extracts of RMC treated with BS3. Indirect immunofluorescence of RMC by using the IgG fraction of goat anti-rat chymase showed that chymase is present on the surface of unstimulated cells. Neither purified chymase nor heparin proteoglycan alone had any appreciable effect on 125I-C3a, but together they resulted in prompt degradation of the 125I-C3a. Immunoabsorption of RMC sonicates with specific antibody for chymase completely abrogated the ability of these sonicates to degrade 125I-C3a. The results indicate that 125I-C3a binds to RMC and is promptly degraded by chymase in the presence of heparin proteoglycan.  相似文献   

19.
Carboxypeptidase activity was studied in subcellular fractions from a transplantable rat insulinoma and found to be localised principally in the insulin secretory granule. The activity, which was specific for peptide substrates with C-terminal basic amino acids, appeared to be a single enzyme with Mr 54 000. This enzyme differed with respect to size and pH optimum from other basic amino acid-specific carboxypeptidases, such as carboxypeptidases B and N, and may be a secretory granule-specific enzyme involved in propolypeptide processing.  相似文献   

20.
We used total internal reflection fluorescence microscopy to study quantitatively the motion and distribution of secretory granules near the plasma membrane (PM) of living bovine chromaffin cells. Within the approximately 300-nm region measurably illuminated by the evanescent field resulting from total internal reflection, granules are preferentially concentrated close to the PM. Granule motion normal to the substrate (the z direction) is much slower than would be expected from free Brownian motion, is strongly restricted over tens of nanometer distances, and tends to reverse directions within 0.5 s. The z-direction diffusion coefficients of granules decrease continuously by two orders of magnitude within less than a granule diameter of the PM as granules approach the PM. These analyses suggest that a system of tethers or a heterogeneous matrix severely limits granule motion in the immediate vicinity of the PM. Transient expression of the light chains of tetanus toxin and botulinum toxin A did not disrupt the restricted motion of granules near the PM, indicating that SNARE proteins SNAP-25 and VAMP are not necessary for the decreased mobility. However, the lack of functional SNAREs on the plasma or granule membranes in such cells reduces the time that some granules spend immediately adjacent to the PM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号