首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two reproductive isolated morphs of Arctic charr (Salvelinus alpinus), termed profundal and littoral charr according to their different spawning habitats, co-occur in the postglacial lake Fjellfr?svatn in North Norway. All profundal charr live in deep water their entire life and have a maximum size of 14cm, while the littoral charr grow to 40cm. Some small and young littoral charr move to the profundal zone in an ontogenetic habitat shift in the ice-free season and the rest of the population remains in epilimnic waters. The two morphs had different diet niches in the profundal zone: the profundal charr ate typical soft-bottom prey (chironomid larvae, pea mussels and benthic copepods), while the young littoral charr mainly consumed crustacean zooplankton. In four other lakes without a profundal morph (i.e. monomorphic populations), young charr also performed ontogenetic habitat shifts to the profundal zone and fed on zooplankton. The profundal morph of Fjellfr?svatn therefore utilize a food resource niche that neither the littoral morph nor comparable monomorphic populations exploit. This suggests that intraspecific resource competition has driven incipient ecological speciation of the profundal charr of Fjellfr?svatn. The exploitation of the soft-bottom resources by the profundal charr supports earlier experimental findings that the profundal morph is genetically different in trophic behaviour and morphology. The sympatric ecological divergence within the profundal habitat is possible because unexploited food resources (soft-bottom profundal prey) are available. Apparently, this represents a case of incipient segregation by expansion to new resource types (niche invasion), and not by subdivision of one broad ancestral niche.  相似文献   

2.
The Arctic charr Salvelinus alpinus populations of the subarctic lakes Takvatn and Fjellfrøsvatn, north Norway, concentrated in the littoral zones (0–15 m) of the lakes during the entire winter (December to May) despite very low temperatures (0·2 and 0·7° C). High prey availability, low predation and competition and comparatively better light under snow and ice in shallow compared with deep water are probable reasons. At ice break in June, all Arctic charr moved to the profundal zone for a brief period, probably in response to the sudden light increase and a profundal resource peak of chironomid pupae. In the summer, the Arctic charr are found in the pelagic, profundal and littoral zones of the lakes. These populations therefore perform regular habitat shifts between the littoral zone in the winter, the profundal zone at ice break and the whole lake in the summer and autumn. The fish fed continuously during winter despite the cold water and the poor light. Amphipods and chironomid larvae dominated the diet. Catch per unit effort, numbers of stomachs with food and food intake rates varied with the subarctic light cycle but were lowest after the winter solstice. The winter assimilation of energy was about equal to the standard metabolism in Takvatn but was higher in Fjellfrøsvatn. The assimilation increased in both lakes under the spring ice in May. The habitat choice, diet and energy assimilation indicate that the Arctic charr is well adapted to the extreme winter conditions of subarctic lakes.  相似文献   

3.
In polymorphic populations morphs usually diverge in morphology, ecology and life history, which is most likely driven by adaptations to different environments or resources. Sympatric morphs may develop differences in several life history traits to be able to maximize fitness in alternative niches and habitats. Here, the contrasting life history traits of three sympatric Arctic charr (Salvelinus alpinus (L.)) morphs in a deep and oligotrophic lake in sub-arctic Norway are addressed. The charr morphs differ in spawning habitat and trophic niche. One is a littoral spawning morph that feeds on benthic invertebrates and zooplankton in the littoral and pelagic zones (referred to as the LO-morph), and two other are profundal spawning morphs that either utilize profundal soft bottom benthos as food resource (the PB-morph) or are piscivorous (the PP-morph). The LO-morph typically had intermediate life-history traits relative to the two profundal morphs that had highly contrasting life history traits, especially in growth and age and size of maturity. The PB-morph matured at a young age (~3 years) and at a small body size (~8.5 cm), thereby increasing their fitness by investing in reproduction early in life, which results in a short generation time and decreased probability of being predated before first reproduction. The PP-morph on the other hand, matured at an old age (~9.2 years) and a large body size (~26 cm), thereby increasing their fitness by investing in somatic growth to enhance initial fecundity, and also to reach a large body size profitable for piscivory. The different trade-off regime between the PP- and PB-morphs seems to be caused by adaptation to alternative trophic niches, and appears to be an important factor for the co-occurrence of the two sister-morphs in the profundal zone.  相似文献   

4.
The sub-arctic Lake Fjellfrøsvatn, northern Norway, has two morphs of Arctic charr that are reproductively isolated because they spawn 5 months apart. The smaller morph (≤14 cm LF ) is confined to the profundal zone of the lake and the larger morph is mainly littoral. Three hypotheses were tested: (i) the offspring of the profundal Arctic charr grow slower than the offspring of the littoral Arctic charr under identical conditions, thus indicating a genetic basis for the slow growth of the profundal Arctic charr in the wild; (ii) the wild phenotypes of the two morphs are morphometrically different and the differences are persistent in the offspring; (iii) the offspring of the two morphs have different behaviour traits under similar treatments. The first hypothesis was rejected; offspring of the profundal morph grew slightly better than offspring of the littoral morph at 10° C in the laboratory. The second and third hypotheses were supported by the data. Wild-caught fish of the two morphs differed in several morphometric characters and most of the differences persisted in the offspring. In the laboratory, offspring of the littoral morph were more active, more aggressive and more pelagic than offspring of the profundal morph and naive offspring of the profundal morph were more effective in eating live chironomid larvae than were offspring of the littoral morph. The data for morphometry and behaviour, but not growth, provide evidence for genetic differences between the two Arctic charr morphs of Fjellfrøsvatn.  相似文献   

5.
Interspecific morph variations in trophic morphology related to skull-bones and head traits is associated to ecological segregation of Arctic charr morphs (genus Salvelinus) in two sub-arctic lakes (Fjellfrøsvatn and Skogsfjordvatn, Norway). The replicated morph pair, the profundal spawning benthivorous PB-morph and the littoral spawning omnivorous LO-morph of Arctic charr, diverge along the shallow-deep-water resource axis. In Skogsfjordvatn there is also a profundal spawning piscivorous PP-morph. The PB-morphs from both lakes have similar skull-bone traits and head morphology such as elongated jaw-bones, small opercular bones and relatively longer heads. The PP-morph also has an elongated head, relatively small opercular bones as well as larger jaw-bones. In contrast, the LO-morphs in both lakes have shorter jaw-bones, larger opercular bones in addition to relatively small heads. However, some small non-parallel differences exist among the morphs from the two lakes. Overall, all profundal morphs (PB and PP) have relatively similar skull-bone structures, suggesting adaptations to the deep-water environment but also to their separated dietary niches. There is strong evidence for parallel evolution with some local adaptations in skull-bones and head morphology of the PB-morph and the LO-morph from separate lakes.  相似文献   

6.
7.
Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow‐, deep‐water resource axis in a subarctic postglacial lake (Norway). The two deep‐water (profundal) spawning morphs, a benthivore (PB‐morph) and a piscivore (PP‐morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep‐water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small‐sized PB‐morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep‐water sediments. The PP‐morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO‐morph) predominantly utilizes the shallow benthic–pelagic habitat and food resources. Compared to the deep‐water morphs, the LO‐morph had smaller head relative to body size. The LO‐morph exhibited traits typical for both shallow‐water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep‐water habitat for the PB‐ and PP‐morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep‐water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep‐water piscivore morph has to our knowledge not been described elsewhere.  相似文献   

8.
Adaptive radiation is considered an important mechanism for the development of new species, but very little is known about the role of thermal adaptation during this process. Such adaptation should be especially important in poikilothermic animals that are often subjected to pronounced seasonal temperature variation that directly affects metabolic function. We conducted a preliminary study of individual lifetime thermal habitat use and respiration rates of four whitefish (Coregonus lavaretus (L.)) morphs (two pelagic, one littoral and one profundal) using stable carbon and oxygen isotope values of otolith carbonate. These morphs, two of which utilized pelagic habitats, one littoral and one profundal recently diverged via adaptive radiation to exploit different major niches in a deep and thermally stratified subarctic lake. We found evidence that the morphs used different thermal niches. The profundal morph had the most distinct thermal niche and consistently occupied the coldest thermal habitat of the lake, whereas differences were less pronounced among the shallow water pelagic and littoral morphs. Our results indicated ontogenetic shifts in thermal niches: juveniles of all whitefish morphs inhabited warmer ambient temperatures than adults. According to sampling of the otolith nucleus, hatching temperatures were higher for benthic compared to pelagic morphs. Estimated respiration rate was the lowest for benthivorous profundal morph, contrasting with the higher values estimated for the other morphs that inhabited shallower and warmer water. These preliminary results suggest that physiological adaptation to different thermal habitats shown by the sympatric morphs may play a significant role in maintaining or strengthening niche segregation and divergence in life-history traits, potentially contributing to reproductive isolation and incipient speciation.  相似文献   

9.
Stable coexistence of Arctic charr and whitefish does occur in a number of native lake fish communities in Scandinavia. Even so, whitefish introductions into Arctic charr lakes have resulted in serious decline and possibly local extinction of Arctic charr. In this article, we analyze the habitat use and diet of the two species in five Norwegian lakes differing in basin shape and environmental conditions. In two of the lakes, both species are native, and appear to live in a relatively stable coexistence. Here, whitefish mainly occupy the littoral and upper pelagic zone, while Arctic charr live in the deeper habitats. Diets are generally quite different in terms of the zooplankton species eaten. In the three other lakes, either whitefish or both species have been introduced. In the shallowest lake, habitat segregation is similar to that seen in the pristine lakes, although Arctic charr appears to be on the brink of extinction. In the remaining two lakes, however, Arctic charr dominates, and occurs in higher numbers than whitefish in all the habitats. Our observations indicate that coexistence of the two species in oligotrophic and relatively pristine lakes requires an extensive profundal zone to serve as a refugium for Arctic charr. If the littoral zone is rendered inaccessible or unprofitable for whitefish due to dominance of a third competitor or predator, or as a result of lake regulation, then Arctic charr may be the dominant species.  相似文献   

10.
A study of body and head development in three sympatric reproductively isolated Arctic charr (Salvelinus alpinus (L.)) morphs from a subarctic lake (Skogsfjordvatn, northern Norway) revealed allometric trajectories that resulted in morphological differences. The three morphs were ecologically assigned to a littoral omnivore, a profundal benthivore and a profundal piscivore, and this was confirmed by genetic analyses (microsatellites). Principal component analysis was used to identify the variables responsible for most of the morphological variation of the body and head shape. The littoral omnivore and the profundal piscivore morph had convergent allometric trajectories for the most important head shape variables, developing bigger mouths and relatively smaller eyes with increasing head size. The two profundal morphs shared common trajectories for the variables explaining most of the body and head shape variation, namely head size relative to body size, placement of the dorsal and pelvic fins, eye size and mouth size. In contrast, the littoral omnivore and the profundal benthivore morphs were not on common allometric trajectories for any of the examined variables. The findings suggest that different selective pressures could have been working on traits related to their trophic niche such as habitat and diet utilization of the three morphs, with the two profundal morphs experiencing almost identical environmental conditions.  相似文献   

11.
Changes in abiotic and biotic factors between seasons in subarctic lake systems are often profound, potentially affecting the community structure and population dynamics of parasites over the annual cycle. However, few winter studies exist and interactions between fish hosts and their parasites are typically confined to snapshot studies restricted to the summer season whereas host‐parasite dynamics during the ice‐covered period rarely have been explored. The present study addresses seasonal patterns in the infections of intestinal parasites and their association with the diet of sympatric living Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) in Lake Takvatn, a subarctic lake in northern Norway. In total, 354 Arctic charr and 203 brown trout were sampled from the littoral habitat between June 2017 and May 2018. Six trophically transmitted intestinal parasite taxa were identified and quantified, and their seasonal variations were contrasted with dietary information from both stomachs and intestines of the fish. The winter period proved to be an important transmission window for parasites, with increased prevalence and intensity of amphipod‐transmitted parasites in Arctic charr and parasites transmitted through fish prey in brown trout. In Arctic charr, seasonal patterns in parasite infections resulted mainly from temporal changes in diet toward amphipods, whereas host body size and the utilization of fish prey were the main drivers in brown trout. The overall dynamics in the community structure of parasites chiefly mirrored the seasonal dietary shifts of their fish hosts.  相似文献   

12.
We studied habitat choice, diet, food consumption and somatic growth of Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) during the ice-covered winter period of a subarctic lake in northern Norway. Both Arctic charr and brown trout predominantly used the littoral zone during winter time. Despite very cold winter conditions (water temperature <1°C) and poor light conditions, both fish species fed continuously during the ice-covered period, although at a much lower rate than during the summer season. No somatic growth could be detected during the ice-covered winter period and the condition factor of both species significantly declined, suggesting that the winter feeding rates were similar to or below the maintenance requirements. Also, the species richness and diversity of ingested prey largely decreased from summer to winter for both fish species. The winter diet of Arctic charr <20 cm was dominated by benthic insect larvae, chironomids in particular, and Gammarus lacustris, but zooplankton was also important in December. G. lacustris was the dominant prey of charr >20 cm. The winter diet of brown trout <20 cm was dominated by insect larvae, whereas large-sized trout mainly was piscivorous, feeding on juvenile Arctic charr. Piscivorous feeding behaviour of trout was in contrast rarely seen during the summer months when their encounter with potential fish prey was rare as the small-sized charr mainly inhabited the profundal. The study demonstrated large differences in the ecology and interactions of Arctic charr and brown trout between the winter and summer seasons.  相似文献   

13.
The habitat and diet choice and the infection (prevalence and abundance) of trophically transmitted parasites were compared in Arctic charr and brown trout living sympatrically in two lakes in northern Norway. Arctic charr were found in all main lake habitats, whereas the brown trout were almost exclusively found in the littoral zone. In both lakes the parasite fauna reflected the niche segregation between trout and charr. Surface insects were most common in the diet of trout, but transmit few parasites, and accordingly the brown trout had a relatively low diversity and abundance of parasites. Parasites transmitted by benthic prey such as Gammarus and insect larva, were common in both salmonid host species. Copepod transmitted parasites were much more common in Arctic charr, as brown trout did not include zooplankton in their diets. Parasite species that may use small fish as transport hosts, were far more abundant in piscivorous fish, especially brown trout. The seasonal dynamics in parasite infection were also consistent with the developments in the diet throughout the year. The study demonstrates that the structure of parasite communities of charr and the trout is highly dependent on shifts in habitat and diet of their hosts both on an annual base and through the ontogeny, in addition to the observed niche segregation between the two salmonid species.  相似文献   

14.
Significant genetic differences ( F ST = 0·032) were found between littoral and profundal morphs of Arctic charr Salvelinus alpinus from Fjellfrøsvatn, northern Norway, using microsatellite DNA analysis. The morphs had strong reproductive isolation in time and space; the segregation of a separate profundal morph is rare in postglacial lakes.  相似文献   

15.
1. Generalist fish species are recognised as important couplers of benthic and pelagic food‐web compartments in lakes. However, interspecific niche segregation and individual specialisation may limit the potential for generalistic feeding behaviour. 2. We studied summer habitat use, stomach contents and stable isotopic compositions of the generalist feeder Arctic charr coexisting with its common resource competitor brown trout in five subarctic lakes in northern Norway to reveal population‐level and individual‐level niche plasticity. 3. Charr and trout showed partial niche segregation in all five lakes. Charr used all habitat types and a wide variety of invertebrate prey including zooplankton, whereas trout fed mainly on insects in the littoral zone. Hence, charr showed a higher potential to promote habitat and food‐web coupling compared to littoral‐dwelling trout. 4. The level of niche segregation between charr and trout and between pelagic‐caught and littoral‐caught charr depended on the prevailing patterns of interspecific and intraspecific resource competition. The two fish species had partially overlapping trophic niches in one lake where charr numerically dominated the fish community, whereas the most segregated niches occurred in lakes where trout were more abundant. 5. In general, pelagic‐caught charr had substantially narrower dietary and isotopic niches and relied less on littoral carbon sources compared to littoral‐caught conspecifics that included generalist as well as specialised benthivorous and planktivorous individuals. Despite the partially specialised planktivorous niche and thus reduced potential of pelagic‐dwelling charr to promote benthic–pelagic coupling, the isotopic compositions of both charr subpopulations suggested a significant reliance on both littoral and pelagic carbon sources in all five study lakes. 6. Our study demonstrates that both interspecific niche segregation between and individual trophic specialisation within generalist fish species can constrain food‐web coupling and alter energy mobilisation to top consumers in subarctic lakes. Nevertheless, pelagic and littoral habitats and food‐web compartments may still be highly integrated due to the potentially plastic foraging behaviour of top consumers.  相似文献   

16.
Reproductive traits differ between intralacustrine Arctic charr morphs. Here, we examine three sympatric lacustrine Arctic charr morphs with respect to fecundity, egg size and spawning time/site to assess reproductive investments and trade‐offs, and possible fitness consequences. The littoral omnivore morph (LO‐morph) utilizes the upper water for feeding and reproduction and spawn early in October. The large profundal piscivore morph (PP‐morph) and the small profundal benthivore morph (PB‐morph) utilize the profundal habitat for feeding and reproduction and spawn in December and November, respectively. Females from all morphs were sampled for fecundity and egg‐size analysis. There were large differences between the morphs. The PB‐morph had the lowest fecundity (mean = 45, SD = 13) and smallest egg size (mean = 3.2 mm, SD = 0.32 mm). In contrast, the PP‐morph had the highest fecundity (mean = 859.5, SD = 462) and the largest egg size (mean = 4.5 mm, SD = 0.46 mm), whereas the LO‐morph had intermediate fecundity (mean = 580, SD = 225) and egg size (mean = 4.3, SD = 0.24 mm). Fecundity increased with increasing body size within each morph. This was not the case for egg size, which was independent of body sizes within morph. Different adaptations to feeding and habitat utilization have apparently led to a difference in the trade‐off between fecundity and egg size among the three different morphs.  相似文献   

17.
Synopsis Habitat use by four morphs of arctic charr,Salvelinus alpinus, was investigated in Thingvallavatn, Iceland, by sampling with pelagic and benthic gill nets. Sampling was done in May/June and August/September. Greatest abundance of fish was recorded in the littoral and epipelagic zone in early autumn. Catches were low in early summer. The four morphs are partly segregated in habitat. Small (SB-) and large benthivorous (LB-) charr have a more restricted spatial distribution than piscivorous (PI-), and especially planktivorous (PL-) charr. Both benthivorous morphs are mainly found in the littoral zone, and occur in largest numbers in stony shallows at depths between 0 and 10 m. PL-charr usually dominates in numbers in all habitats. PI-charr is most abundant in epibenthic habitats, although numbers are always low. All morphs are caught in higher numbers at night than during the day, but the diurnal activity difference is highest among SB-charr. The habitat use by different morphs is as may be expected from their morphology and diets. Within the population of PL-charr, young and small fish are more abundant on the bottom than in the pelagic zone, and there is a surplus of females in the pelagic zone. Along the benthic profile, young, small and immature PL-charr are more abundant in deep than in shallow waters. The results are discussed in relation to food supply, competition and predation. Possible reasons for the occurrence of four arctic charr morphs are also discussed.Contribution from the Thingvallavatn project.  相似文献   

18.
Summary Resource utilization by cutthroat trout (CT) and Dolly Varden charr (DV) was studied 8 years after experimental transfers from sympatry had established reproducing allopatric populations in two nearby fishless lakes. Allopatric DV significantly increased their utilization of shallow-dwelling zoobenthos, and increased their vertical distribution in comparison to that in sympatry. In contrast, allopatric CT showed little change in the proportions of major prey types utilized, and, if anything, restricted their vertical distribution in comparison to that in sympatry. The results can be explained by the hypothesis that the resource use of DV is strongly influenced by interspecific competition from CT, whereas CT largely remains unaffected by this interaction. An alternative hypothesis, that lake differences can explain the differences in resource use between sympatry and allopatry, was evaluated by comparing food resource availability and other biotic and abiotic characteristics of the three study lakes. None of these could account for the shift in resource use by DV between sympatry and allopatry, but lake differences may explain why allopatric CT showed a restricted habitat use in comparison with their sympatric donor stock. The results of this whole-lake transfer experiment are consistent with earlier reported field and laboratory studies, and suggest that the aggressive dominance of CT is the most important mechanism by which DV are displaced from littoral and near-surface habitats in sympathy with CT.  相似文献   

19.
Synopsis Extensive upstream migration of landlocked Arctic charr during spring floods was recorded in several tributaries of an oligotrophic lake in north-west Sweden. Migration was confined to a period of about two weeks and residence in most creeks was of short duration. Only fish migrating to two small productive lakes remained in the new habitat over the summer. Repeated annual migrations were only recorded in the creek leading to these lakes and no straying was observed among repeat migrants. Water temperatures provided the primary cues for initiation and direction of migration, although an ability to detect productive habitats by odour was indicated. Creek size, feeding opportunities during migration and conspeeific odour were subordinate guiding factors.  相似文献   

20.
The parasite-host relationships between Salmincola edwardsii (Copepoda: Lernaeopodidae) and Arctic charr Salvelinus alpinus were studied in lake Takvatn, northern Norway, over an 8-year period. The infection levels were modest, with an overall prevalence of 16·1% and an abundance of 0·5 parasites fish−1. Most of the infected fish (54·1%) had only one parasite attached, whilst only 4·3% had more than 10. In general, parasite infection increased with increasing age, and hence size of the fish. The increase was modest up to age 7, whereafter a steep increment in parasite burdens occurred. Within each age class there was little effect of either fish size, gender, maturation or choice of macrohabitat upon parasite abundance. There was also little year-to-year variation in infection of the different age classes, indicating a high degree of stability of the parasite-host interactions in this system. The infection levels exhibited seasonal changes, being lowest in early summer and highest during winter. The infection rates seemed to be related to seasonal and ontogenetic habitat shifts of the charr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号