首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Thin, three-dimensional crystals of CaATPase have been studied at high resolution by electron crystallography. These crystals were grown by adding purified CaATPase to appropriate concentrations of lipid, detergent and calcium. A thin film of crystals was then rapidly frozen and maintained in the frozen-hydrated state during electron microscopy. The resulting electron diffraction patterns extend to 4.1 A resolution and images contain phase data to 6 A resolution. By combining Fourier amplitudes from electron diffraction patterns with phases from images, a density map has been calculated in projection. Comparison of this map from unstained crystals with a previously determined map from negatively stained crystals reveals distinct contributions from intramembranous and extramembranous protein domains. On the basis of this distinction and of the packing of molecules in the crystal, we have proposed a specific arrangement for the ten alpha-helices that have been suggested as spanning the bilayer.  相似文献   

2.
We have used molecular replacement followed by a highly parameterized refinement to determine the structure of tropomyosin crystals to a resolution to 9 A. The shape, coiled-coil structure and interactions of the molecules in the crystals have been determined. These crystals have C2 symmetry with a = 259.7 A, b = 55.3 A, c = 135.6 A and beta = 97.2 degrees. Because of the unusual distribution of intensity in X-ray diffraction patterns from these crystals, it was possible to solve the rotation problem by inspection of qualitative aspects of the diffraction data and to define unequivocally the general alignment of the molecules along the (332) and (3-32) directions of the unit cell. The translation function was then solved by a direct search procedure, while electron microscopy of a related crystal form indicated the probable location of molecular ends in the asymmetric unit, as well as the anti-parallel arrangement. The structural model we have obtained is much clearer than that obtained previously with crystals of extraordinarily high solvent content and shows the two alpha-helices of the coiled coil over most of the length of the molecules and establishes the coiled-coil pitch at 140(+/- 10) A. Moreover, the precise value of the coiled-coil pitch varies along the molecule, probably in response to local variations in the amino acid sequence, which we have determined by sequencing the appropriate cDNA. The crystals are constructed from layers of tropomyosin filaments. There are two molecules in the crystallographic asymmetric unit and the molecules within a layer are bent into an approximately sinusoidal profile. Molecules in consecutive layers in the crystal lie at an angle relative to one another as found in crystalline arrays of actin and myosin rod. There are three classes of interactions between tropomyosin molecules in the spermine-induced crystals and these give some insights into the molecular interactions between coiled-coil molecules that may have implications for assemblies such as muscle thick filaments and intermediate filaments. In interactions within a layer, the geometry of coiled-coil contacts is retained, whereas in contacts between molecules in adjacent layers the coiled-coil geometry varies and these interactions instead appear to be dominated by the repeating pattern of charged zones along the molecule.  相似文献   

3.
The structure of the light-harvesting chlorophyll a/b-protein complex has been determined at 3.7 A resolution in projection by electron diffraction, electron microscopy and image analysis. Diffraction patterns and high-resolution spotscan images of two-dimensional crystals stabilized with tannin were recorded at low temperature. Phases of structure factors were obtained directly by image processing, after correction of the images for lattice distortions, defocus and beam tilt. Amplitudes were measured by electron diffraction. The projection map shows the detailed structure of the trimeric complex, suggesting the positions of two domains of potential structural and functional homology, of one membrane-spanning alpha-helix approximately perpendicular to the membrane plane and of several tightly bound lipid molecules.  相似文献   

4.
Large, well-ordered 2-D crystals of the dodecylmaltoside complex of the Neurospora crassa plasma membrane H(+)-ATPase grow rapidly on the surface of a polyethylene glycol-containing mixture similar to that originally developed for growing 3-D crystals of this integral membrane transport protein. Negative stain electron microscopy of the crystals shows that many are single layers. Cryoelectron microscopy of unstained specimens indicates that the crystals have a p6 layer group with unit cell dimensions of a = b = 167 A. Image processing of selected electron micrographs has yielded a projection map at 10.3 A resolution. The repeating unit of the ATPase crystals comprises six 100 kDa ATPase monomers arranged in a symmetrical ring. The individual monomers in projection are shaped like a boot. These results provide the first indications of the molecular structure of the H(+)-ATPase molecule. They also establish the feasibility of precipitant-induced surface growth as a rapid, simple alternative to conventional methods for obtaining 2-D crystals of the integral membrane proteins useful for structure analysis.  相似文献   

5.
Current models suggest that the first step in the assembly of Acanthamoeba myosin-II is anti-parallel dimerization of the coiled-coil tails with an overlap of 15 nm. Sedimentation equilibrium experiments showed that a construct containing the last 15 heptads and the non-helical tailpiece of the myosin-II tail (15T) forms dimers. To examine the structure of the 15T dimer, we grew 3D and 2D crystals suitable for X-ray diffraction and electron image analysis, respectively. For both conditions, crystals formed in related space and plane groups with similar unit cells (a=87.7 A, b=64.8 A, c=114.9 A, beta=108.0 degrees). Inspection of the X-ray diffraction pattern and molecular replacement analysis revealed the orientation of the coiled-coils in the unit cell. A 3D density map at 15A in-plane resolution derived from a tilt series of electron micrographs established the solvent content of the 3D crystals (75%, v/v), placed the coiled-coil molecules at the approximate translation in the unit cell, and revealed the symmetry relationships between molecules. On the basis of the low-resolution 3D structure, biochemical constraints, and X-ray diffraction data, we propose a model for myosin interactions in the anti-parallel dimer of coiled-coils that guide the first step of myosin-II assembly.  相似文献   

6.
Low dose electron diffraction and imaging techniques have been applied to the study of the crystalline structure of gp32*I, a DNA helix destabilizing protein derived from bacteriophage T4 gene 32 protein. A quantitative analysis of intensities from electron diffraction patterns from tilted, multilayered gp32*I crystal has provided the unit cell thickness of the crystal. The three-dimensional phases indicate that the space group P2(1)2(1)2. By taking into account the unit cell volume and the solvent content in the crystal, it was deduced that there is one gp32*I molecule in each asymmetric unit. A projected density map of unstained, glucose-embedded gp32*I crystal was synthesized with amplitudes from electron diffraction intensities and phases from electron images with reflections out to 7.6 A. Because of the similarity in the scattering density between glucose and protein, this projected map cannot be interpreted with certainty. A low resolution three-dimensional reconstruction shows that the protein molecule is about 90 A long and about 20 A in diameter. Because the dimer is formed around a dyad axis, the protein molecules comprising it must be arranged head-to-head. This dimeric arrangement of the proteins in the unit cell may be implicated as one of the conformational states of this protein in solution.  相似文献   

7.
Electron microscope images of frozen-hydrated crystals of a proteolytically modified fibrinogen show excellent preservation of the structure. An electron density map of the key centric projection of the crystal at 18 A resolution has been obtained by combining the phases derived from cryo-electron microscopy with X-ray amplitudes. Simulation methods developed in earlier studies have been used to interpret the map. In contrast to the earlier images, the map allows us to visualize the coiled-coil region of the molecule and possible substructure in the beta domains. The map also shows that there is a marked difference in density in the two regions corresponding to the molecular ends where the gamma domains interact. A possible interpretation of this finding is provided by assuming substructure in the gamma domains and the breaking of molecular symmetry where these domains interact. Some additional constraints useful for the determination of the three-dimensional structure were obtained from cryo-electron micrographs of a perpendicular view at 25 A resolution. Implications of this working model for the molecular length and contacts in the filaments in both the crystal and fibrin are described. The data used here will be valuable as a starting point for obtaining the three-dimensional structure.  相似文献   

8.
The structure of thin three-dimensional crystals of the light-harvesting chlorophyll a/b protein complex, an integral membrane protein from the photosynthetic membrane of chloroplasts, has been determined at 7 A (1 A = 0.1 nm) resolution in projection. The structure analysis was carried out by image processing of low-dose electron micrographs, and electron diffraction of thin three-dimensional crystals preserved in tannin. The three-dimensional crystals appeared to be stacks of two-dimensional crystals having p321 symmetry. Results of the image analysis indicated that the crystals were disordered, due to random translational displacement of stacked layers. This was established by a translation search routine that used the low-resolution projection of a single layer as a reference. The reference map was derived from the symmetrized average of two images that showed features consistent with the projected structure of negatively stained two-dimensional crystals. The phase shift resulting from the displacement of each layer was corrected. Phase shifts were then refined by minimizing the phase residual, bringing all layers to the same phase origin. Refined phases from different images were in agreement and reliable to 7 A resolution. A projection map was generated from the averaged phases and electron diffraction amplitudes. The map showed that the complex was a trimer composed of three protein monomers related by 3-fold symmetry. The projected density within the protein monomer suggested membrane-spanning alpha-helices roughly perpendicular to the crystal plane. The density in the centre and on the periphery of the trimeric complex was lower than that of the protein, indicating that this region contained low-density matter, such as lipids and antenna chlorophylls.  相似文献   

9.
Crystals of myosin subfragment-1 have been examined by X-ray diffraction and electron microscopy to determine how the molecules pack in the unit cell and to gain preliminary information on the size and shape of the myosin head. Subfragment-1 crystallizes in space group P212121. Analysis of the X-ray diffraction photographs shows that there are eight molecules in the unit cell with two in the asymmetric unit related by a non-crystallographic or local 2-fold axis. It also indicates that in projection down the a axis, two molecules of myosin subfragment-1 lie almost directly on top of one another except for a translation of about 9 A along c. Small crystals were fixed and embedded in the presence of tannic acid, and thin sections were cut perpendicular to each of the three crystallographic axes. Image analysis of micrographs recorded from these sections confirm the packing arrangement deduced from X-ray diffraction, and give the approximate size and shape of the molecule in the crystal lattice. They show that the molecule is at least 160 A long with a maximum thickness of about 60 A, and that it has marked curvature in the unit cell.  相似文献   

10.
The goal of time-resolved crystallographic experiments is to capture dynamic "snapshots" of molecules at different stages of a reaction pathway. In recent work, we have developed approaches to determine determined light-induced conformational changes in the proton pump bacteriorhodopsin by electron crystallographic analysis of two-dimensional protein crystals. For this purpose, crystals of bacteriorhodopsin were deposited on an electron microscopic grid and were plunge-frozen in liquid ethane at a variety of times after illumination. Electron diffraction patterns were recorded either from unilluminated crystals or from crystals frozen as early as 1 ms after illumination and used to construct projection difference Fourier maps at 3.5-A resolution to define light-driven changes in protein conformation. As demonstrated here, the data are of a sufficiently high quality that structure factors obtained from a single electron diffraction pattern of a plunge-frozen bacteriorhodopsin crystal are adequate to obtain an interpretable difference Fourier map. These difference maps report on the nature and extent of light-induced conformational changes in the photocycle and have provided incisive tools for understanding the molecular mechanism of proton transport by bacteriorhodopsin.  相似文献   

11.
The structure of FhuA, a siderophore and phage receptor in the outer membrane of Escherichia coli, has been investigated by electron crystallography. Bidimensional crystals of hexahistidine-tagged FhuA protein solubilized in N,N-dimethyldodecylamine-N-oxide were produced after detergent removal with polystyrene beads. Frozen-hydrated crystals (unit cell dimensions of a = 124 A, b = 98 A, gamma = 90 degrees ) exhibited a p22121 plane group symmetry. A projection map at 8 A resolution showed the presence of dimeric ring-like structures with an elliptical shape (48 x 40 A). Each monomer was composed of a ring of densities with a radial width of 8-10 A corresponding to a cylinder of beta sheets. Few densities are present inside the barrel, leaving a central channel approximately 25 A in diameter. A projection map of FhuA at 15 A resolution, which was calculated from negatively stained preparations, demonstrated that most of the central channel was masked by extramembrane domains. This map also revealed an asymmetric distribution of extramembrane domains in FhuA, with large domains located mainly on one side of the molecule. Comparison with density maps derived from recent atomic structure allowed further interpretation of the electron microscopy projection structures with regard to long hydrophilic loops governing the selectivity and opening of the channel.  相似文献   

12.
We have produced crystalline tubes of chicken breast myosin long subfragment-2 that show order to resolutions better than 2 nm. The tubes were formed from a thin sheet in which the myosin long subfragment-2 molecules were arranged on an approximately rectangular crystalline lattice with a = 14.1 +/- 0.2 nm and b = 3.9 +/- 0.1 nm in projection. Shadowing indicated that the tube wall was approximately 7 nm thick and that the sheets from which it was formed followed a right-handed helix. Superposition of the lattices from the top and bottom of the tube produced a moire pattern in negatively stained material, but images of single sheets were easily obtained by computer image processing. Although several molecules were superimposed perpendicular to the plane of the sheet, the modulation in density due to the coiled-coil envelope was clear, indicating that the coiled-coils in these molecules were in register (or staggered by an even number of quarter pitches). In projection the coiled-coil had an apparent pitch of 14.1 nm (the axial repeat of the unit cell), but the small number of molecules (probably four) superimposed perpendicular to the plane of the sheet meant that pitches within approximately 1 nm of this value could have shown a modulation. Therefore, a more precise determination of the coiled-coil pitch must await determination of the sheet's three-dimensional structure. The coiled-coils of adjacent molecules within the plane of the sheet were staggered by an odd number of quarter pitches. This arrangement was similar to that between paramyosin molecules in molluscan thick filaments and may have features in common with other coiled-coil protein assemblies, such as intermediate filaments. Each molecule in the crystal had two types of neighbor: one staggered by an odd number of quarter pitches and the other by an even number of quarter pitches, as has been proposed for the general packing of coiled-coils (Longley, W., 1975, J. Mol. Biol., 93:111-115). We propose a model for the detailed packing within the sheet whereby molecules are inclined slightly to the plane of the sheet so that its thickness is determined by the molecular length.  相似文献   

13.
The crotoxin complex from Crotalus d. terrificus rattlesnake venom was crystallized in the form of thin platelets. These crystals were prepared by the glucose embedding technique and examined by low dose electron microscopy. Electron diffraction patterns and images have been recorded to 2.2 and 4.5 A, respectively. By a combination of electron and X-ray diffraction techniques, the space group of this crystal was determined to be P4(2)22 with eight crotoxin complex molecules in one unit cell with dimensions of 38.8 A x 38.8 A x 256.8 A. The Patterson maps and the symmetry reliability factors calculated from the electron diffraction intensities clearly showed the existence of three types of electron diffraction patterns in different crystals. The phases in the computer-calculated transform of the low dose images also show the variation in symmetry among crystals. These phenomena are explained by the presence of crystals consisting of one-half, three-quarter and one unit cell in thickness. The interpretation of the computer reconstructed two-dimensional density map was limited, partly because of the similarity in density between the protein and the embedding glucose and partly because of the non-uniqueness in relating projected structure to the three-dimensional structure.  相似文献   

14.
Thin three-dimensional crystals of the cytochrome b6 f complex from the unicellular algae Chlamydomonas reinhardtii have been grown by BioBeads-mediated detergent removal from a mixture of protein and lipid solubilized in Hecameg. Frozen-hydrated crystals, exhibiting p22121 plane group symmetry, were studied by electron crystallography and a projection map at 9 A resolution was calculated. The crystals (unit cell dimensions of a=173.5 A, b=70.0 A and gamma=90.0 degrees) showed the presence of dimers, and within each monomer 14 domains of electron density were observed. The combination of the projection map obtained from ice-embedded crystals of cytochrome b6 f with a previous map obtained from negatively stained samples brings new insight in the organization of the complex. For example, it distinguishes some peaks and/or domains that are only extramembrane or transmembrane, and reveals the possible localization of single-stranded transmembrane alpha-helices (Pet subunits). Furthermore, the cross-correlation of our projection map from frozen hydrated samples with the atomic model of the transmembrane part of the cytochrome bc1 complex has allowed us to localize the cytochrome b6 at the dimer interface and to reveal structural differences between the two complexes.  相似文献   

15.
Two-dimensional crystals from light-harvesting complex I (LHC I) of the purple non-sulfur bacterium Rhodospirillum rubrum have been reconstituted from detergent-solubilized protein complexes. Frozen-hydrated samples have been analysed by electron microscopy. The crystals diffract beyond 8 A and a projection map was calculated to 8.5 A. The projection map shows 16 subunits in a 116 A diameter ring with a 68 A hole in the centre. These dimensions are sufficient to incorporate a reaction centre in vivo. Within each subunit, density for the alpha- and the beta-polypeptide chains is clearly resolved, and the density for the bacteriochlorophylls can be assigned. The experimentally determined structure contradicts models of the LHC I presented so far.  相似文献   

16.
Michel H 《The EMBO journal》1982,1(10):1267-1271
The three-dimensional crystals of the integral membrane protein bacteriorhodopsin have been characterized by X-ray diffraction and freeze-fracture electron microscopy: the needle-like form A crystals belong to space group P 1 (pseudohexagonal) with seven molecules per crystallographic unit cell forming one turn of a non-crystallographic helix. The probable arrangement of the bacteriorhodopsin molecules is derived from freeze-fracture electron micrographs and chromophore orientation. Membrane-like structures are not present. The same helices of bacteriorhodopsin molecules found in crystal form A also make up the cube-like crystal form B. They are now arranged in all three mutually perpendicular directions. These cubes are always highly disordered, since the unit cell length corresponds to 6.7 molecules of the 7-fold helix. Very often, conversion of bacteriorhodopsin from the three-dimensional crystals into filamentous material occurs.  相似文献   

17.
We have produced several new macroscopic crystal forms and a variety of microcrystals from modified flbrinogens. Bovine and rabbit flbrinogens crystallize after limited digestion by a bacterial protease or α-chymotrypsin. The fibrinogens making up these crystals are largely intact and highly clottable. Tentative molecular packing arrangements for two crystal forms have been deduced. The crystal morphology and cleavage planes were used in this analysis. The characteristic α-helical coiled-coil reflections arid spikes of intensity in certain directions in the crystal X-ray patterns serve as markers for the orientation of the fibrinogen molecules. Changes that occur in one of the forms during preparation for electron microscopy, as shown by comparison with X-ray experiments on crystals in various stains and solvents, support this packing model. These studies provide preliminary evidence that fibrinogen is about 450 Å in length and that the molecules bond end-to-end to form filaments making up the crystals.  相似文献   

18.
A photosystem II complex containing the reaction center proteins D1 and D2, a 47-kDa chlorophyll-binding protein (CP47), and cytochrome b-559 was isolated with high yield, purity, and homogeneity; small but well-ordered two-dimensional crystals were prepared from the particles. The crystals and the isolated particles were analyzed by electron microscopy using negatively stained specimens. The information of 20 different digitized crystals was combined by alignment programs based on correlation methods to obtain a final average. The calculated diffraction pattern, with spots up to a resolution of 2.5 nm, and the optical diffraction pattern of a single crystal indicate that the plane group is p22121 (also called p2gg) and that the unit cell is rectangular with parameters of 23.5 x 16.0 nm, containing four stain-excluding monomers (two face-up and two face-down). In projection, the monomers have an asymmetrical shape with a length of 10 nm, a maximal width of 7.5 nm, and a height of 6 nm; their molecular mass is 175 +/- 40 kDa.  相似文献   

19.
BACKGROUND: The parallel two-stranded alpha-helical coiled coil is the most frequently encountered subunit-oligomerization motif in proteins. The simplicity and regularity of this motif have made it an attractive system to explore some of the fundamental principles of protein folding and stability and to test the principles of de novo design. RESULTS: The X-ray crystal structure of the 18-heptad-repeat alpha-helical coiled-coil domain of the actin-bundling protein cortexillin I from Dictyostelium discoideum is a tightly packed parallel two-stranded alpha-helical coiled coil. It harbors a distinct 14-residue sequence motif that is essential for coiled-coil formation, and is a prerequisite for the assembly of cortexillin I. The atomic structure reveals novel types of ionic coiled-coil interactions. In particular, the structure shows that a characteristic interhelical and intrahelical salt-bridge pattern, in combination with the hydrophobic interactions occurring at the dimer interface, is the key structural feature of its coiled-coil trigger site. CONCLUSIONS: The knowledge gained from the structure could be used in the de novo design of alpha-helical coiled coils for applications such as two-stage drug targeting and delivery systems, and in the design of coiled coils as templates for combinatorial helical libraries in drug discovery and as synthetic carrier molecules.  相似文献   

20.
The structure of PhoE porin in projection normal to the membrane plane has been determined to a resolution of about 3.5 A by electron crystallographic techniques. The purified protein was reconstituted with lipid to form two-dimensional crystals. High resolution images and electron diffraction patterns of these specimens embedded in trehalose were recorded to obtain respectively the structure factor phase information and the more accurate values of the amplitude. The projection map shows interesting features that are not seen in the earlier map at 6.5 A. Details of the trimeric ring-like structures in our earlier map are now resolved. Each ring-like structure consists of "beads" with interbead spacings of about 4-6 A. These beads are interpreted as the projections of beta-strands along the strands' axes. At the center of the trimeric structure, there is a low density region that we proposed previously to be the location of lipopolysaccharide. Within each ring-like structure, there are complicated features which may play an important role in the size, selectivity, and stability of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号