首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mono- and dilauroyl arabitols, ribitols, xylitols and sorbitols were synthesized batchwise or continuously at 50°C or 60°C by condensation catalyzed by an immobilized Candida antarctica lipase in acetone. Continuous production was realized using a system where a column packed with sugar alcohol and a packed-bed reactor with the immobilized lipase were connected in series. The concentrations of the mono- and dilauroyl esters of each sugar alcohol became almost constant at mean residence times of 15 min or longer in the packed-bed reactor. The monolauroyl, monomyristoyl and monopalmytoyl arabitols, ribitols, xylitols and sorbitols were continuously produced using the reactor system at 60°C, and the productivity was in the range of 1.3–2.0 kg L?1-reactor·day except for the fatty acid esters of sorbitol, the productivity of which was 0.6–0.8 kg L?1-reactor·day.  相似文献   

2.
Chau CM  Liu KJ  Lin CH 《Bioresource technology》2011,102(21):10136-10138
The effects of important reaction parameters on the enhancement of sialic acid derivative lipophilic properties through the lipase-catalyzed esterification of N-acetyl neuraminic acid methyl ester are investigated in this study. It is found that the lipase Novozym 435 from Candida antarctica is particularly useful in the preparation of sialic acid methyl ester monononanoate (SAMEMN). The optimum temperature for the SAMEMN synthesis reaction using Novozym 435 is 60 °C, and nonanoic anhydride is found to be the best substrate among all acyl donors. The Novozym 435-catalyzed esterification of N-acetyl neuraminic acid methyl ester gave a maximum yield of 87.7% after 6 h in acetonitrile at 60 °C. Because the novel method developed is simple, yet effective, it could potentially be used industrially for the production of sialic acid derivatives.  相似文献   

3.
4.
We have examined the chain length selectivity for a series of acyl donors by lipase B from Candida antarctica (CalB). CalB accepted aliphatic diesters of C4, C6 and C12 chain lengths equally. The introduction of a carbon–carbon double bond into the C4 esters dramatically lowered the rate constant associated with polymerization highlighting the role of geometry in catalysis; fumarate esters were polymerized at a reduced rate compared to the succinate esters, while the maleate esters were not polymerized above 5% over the course of 24 h. A disiloxane-containing diester impeded catalysis by CalB. We examined a series of vinyl siloxane esters and alcohols, and learned that the Z arrangement around the double bond stalled esterification by CalB completely. The distance between the ester carbonyl and the dimethylsiloxy group was shown to be an important factor in mediating catalysis. The rate constants were similar when the methylene spacer was 3, 4, or 5 units in length; beyond 6 methylene units, the rate constants increased. This has been tentatively attributed to the local reduction on the steric bulk when the larger siloxane moiety lies outside of the active site of the enzyme.  相似文献   

5.
A packed-bed reactor (PBR) system using immobilized lipase PS as biocatalyst was developed for continuous monoacylglycerols (MAG) production. The condition for continuous MAG production using immobilized lipase PS (IM-PS) of 1.5 g (550 U) in PBR (0.68 cm i.d., 25 cm long) was optimized. The effect of molar ratio of glycerol to palm olein, water content in glycerol and residence time on MAG production was investigated. The optimal glycerol to palm olein molar ratio and water content in glycerol were 12:1 and 10% (w/w), respectively. The yield of MAG increased with increasing residence time. At a residence time of 7.5 h gave the highest yield of MAG of 60%. The long-term operation gave the highest yield of MAG 61.5% at 24 h of the operation time with the productivity of 1.61 g MAG/day. A half-life of the long-term process was 35 days of the operation time with the productivity of 0.81 g MAG/day. Furthermore, the large scale of MAG production was performed continuously with IM-PS of 15 g (5500 U) in PBR (1.5 cm i.d., 50 cm long). The highest yield of MAG in large-scale operation of 70.1% and the 11-fold increasing in productivity of 18.3 g MAG/day were obtained at 24 h of the operation time.  相似文献   

6.
Glucuronic acid n-alkyl esters, a novel class of promising biosurfactants and their corresponding glucose esters with the same side-chain length, were synthesized by direct esterification in a non-aqueous phase (tert-butanol) using an immobilized lipase.  相似文献   

7.
Enzymatic synthesis of terpenyl esters by esterification or transesterification with fatty acid vinyl esters as acyl donors by celite-adsorbed lipase of Trichosporon fermentans was investigated. In direct esterification of geraniol, the lipase showed high reactivity toward fatty acids with carbon chains longer than C-8, but little reactivity toward fatty acids with shorter chains. With fatty acid vinyl esters as acyl donors, the lipase catalysed the synthesis of geranyl and citronellyl esters with carbon chains shorter than C-6 in with yields of >90% molar conversion. Time course, effects of added water, temperature and substrate concentration were studied for the synthesis of geranyl acetate. Molar conversion yield reached 97.5% after 5 h incubation at 30–40°C with the addition of 3% water. In this reaction, no inhibition by substrates such as geraniol and vinyl acetate was observed.  相似文献   

8.
Twenty-one different organic solvents were assayed as possible reaction media for the synthesis of butyryl esters from trimethylammonium alcohols in dry conditions catalyzed by immobilized Candida antarctica lipase B. The reactions were carried out following a transesterification kinetic approach, using choline and L-carnitine as primary and secondary trimethylammonium alcohols, respectively, and vinyl butyrate as acyl donor. The synthetic activity of the enzyme was strictly dependent on the water content, the position of the hydroxyl group in the trimethylammonium molecule, and the Log P parameter of the assayed solvent. Anhydrous conditions and a high excess of vinyl butyrate over L-carnitine were necessary to synthesize butyryl-L-carnitine. The synthetic reaction rates of butyryl choline were practically 100-fold those of butyryl-L-carnitine with all the assayed solvents. In both cases, the synthetic activity of the enzyme was dependent on the hydrophobicity of the solvent, with the optimal reaction media showing a Log P parameter of between -0.5 and 0.5. In all cases, 2-methyl-2-propanol and 2-methyl-2-butanol were shown to be the best solvents for both their high synthetic activity and negligible loss of enzyme activity after 6 days.  相似文献   

9.
Commercial available lipases viz. Lipozyme™, Novozyme-735 and Candida antartica lipase-B (CAL-B) were immobilized on seven different supports by simple adsorption process. The importance of suitable enzyme–support combination in esterification of lauric acid and iso-propanol was validated experimentally. Effect of long chain fatty acids (C4–C18) and small chain monohydric alcohols (C1–C6) on specific activities of different immobilized lipases were evaluated. Lauric acid (C12) was found to be the most preferred fatty acid and t-amyl alcohol (C5) being the best alcohol. CAL-B adsorbed on Lewatit was the most efficient immobilized enzyme for esterification reaction. Selectivity constant for lauric acid (3.4) was the highest among all fatty acids tested, whereas there was not much difference in selectivity between different alcohols. Furthermore, increase in fatty acid unsaturation leads to decrease catalytic efficiency of immobilized CAL-B. The optimum conditions for t-amyllaurate synthesis were as follows: lauric acid—0.5 M, t-amyl alcohol—0.3 M and amount of immobilized enzyme—150 mg. Finally, CAL-B adsorbed on Lewatit was reused for three consecutive cycles.  相似文献   

10.
Sugar esters of fatty acids have many applications as biocompatible and biodegradable emulsifiers, which are determined by their degrees of esterification (DE). Direct esterification of fructose with lauric acid in organic media used commercial immobilized Candida antarctica lipase B (CALB) was investigated for DE. Significant difference of DE was observed between 2-methyl-2-butanol (2M2B) and methyl ethyl ketone (MEK), as di-ester/mono-ester molar ratio of 1.05:1 in 2M2B and 2.79:1 in MEK. Fourier transform infrared (FTIR) spectra showed that the secondary structure of the enzyme binding mono-ester presented distinct difference in 2M2B and MEK. Contents of β-turn and antiparallel β-sheet of CALB in 2M2B were 26.9% and 16.2%, respectively, but 19.1% and 13.2% in MEK. To understand the relationship between the conformational changes and differences of DE, mono-ester and fatty acid were directly employed for synthesis of di-ester. The maximum initial velocity of di-ester synthesis in MEK was 0.59 mmol g (enzyme)−1 h−1, which was 2.19-fold as greater as that in 2M2B, indicating that CALB conformation in MEK was preferred for the synthesis of di-ester. These results demonstrated that the conformation of CALB binding mono-ester affected by organic solvents essentially determined DE.  相似文献   

11.
Abstract

Pinolenic acid (PLA) enrichment as an ethyl ester from pine nut oil was successfully accomplished in a batch reactor by lipase-catalyzed ethanolysis using Novozym 435 lipase from Candida antarctica as a biocatalyst. PLA is predominantly an sn-3 substituent of the pine nut oil triacylglycerol (TAG), where it accounts for about 39 mol% of the fatty acids esterified at that position. In the presence of ethanol, Novozym 435 exhibited sn-3 regiospecificity with respect to the TAG of pine nut oil. The effect of the molar ratio of reactants on PLA enrichment by ethanolysis was investigated. The molar ratios of pine nut oil to ethanol were varied from 1:20 to 1:100. A fatty acid ethyl ester (FAEE) fraction with higher PLA content was obtained in the early stage of the reaction, although the yield of PLA was small. However, the PLA content of the FAEEs decreased with increasing reaction time, while the yield of PLA increased. The molar ratio of pine nut oil to ethanol that produced the optimum content and yield of PLA in FAEEs was 1:80.  相似文献   

12.
1-Pentyl, 1-hexyl and 1-heptyl ferulates were continuously synthesized at 60–90°C using a reactor system in which a column packed with ferulic acid powders and another column packed with immobilized Candida antarctica lipase particles were connected in series. Conversions greater than 0.9 were achieved for the synthesis of the 1-hexyl and 1-heptyl ferulates at 90°C. The system could be stably operated for the 1-heptyl ferulate synthesis at 90°C for at least two weeks.  相似文献   

13.
The effect of solvents and solvent mixtures on the synthesis of myristic acid esters of different carbohydrates with an immobilized lipase from C. antarctica was investigated. The rate of myristyl glucose synthesized by the enzyme was increased from 3.7 to 20.2 micromol min(-1) g(-1) by changing the solvent from pure tert-butanol to a mixture of tert-butanol:pyridine (55:45 v/v), by increasing the temperature from 45 degrees C to 60 degrees C, and by optimizing the relative amounts of glucose, myristic acid, and the enzyme preparation. Addition of more than 2% DMSO to the tert-butanol:pyridine system resulted in a reduction of enzyme activity. Lowering the water content of the enzyme preparation below 0.85% (w/w) resulted in significant decreases in enzyme activity, while increasing the water content up to 2.17% (w/w) did not significantly affect the enzyme activity. The highest yields of myristyl glucose were obtained when an excess of unsolubilized glucose was present in the reaction system. In this case, all of the initially solubilized and a significant amount of the initially unsolubilized glucose was converted to the ester within 24 h of incubation, resulting in a myristyl glucose concentration of 34 mg/mL(-1). Myristic acid esters of fructose (22.3 micromol min(-1) g(-1)), alpha-D-methyl-glucopyranoside (26.9 micromol min(-1) g(-1)) and maltose (1.9 micromol min(-1) g(-1)) could also be prepared using the tert-butanol:pyridine solvent system. No synthesis activity was observed with maltotriose, cellobiose, sucrose, and lactose as substrate.  相似文献   

14.
Natural astaxanthin is widely used as a food and cosmetics additive because of its multiple biological activities. However, astaxanthin produced by Haematococcus pluvialis is generally esterified, and its activity is far less than that of free astaxanthin. Hydrolysis of astaxanthin esters to free astaxanthin by enzymes can overcome the drawbacks of chemical saponification methods. In this paper, a slug-flow microchannel reactor was constructed and tested in enzymatic hydrolysis of astaxanthin esters. The reactor consists of a “T” slug-flow generator, a stainless-steel microchannel, two constant-flow pumps, and a temperature controller. The reactor has the advantages of simple configuration and easy scale-up, and is suitable for two-phase biochemical reactions. Using the microchannel reactor, astaxanthin esters in H. pluvialis oil were efficiently hydrolyzed to free astaxanthin by lipase from Aspergillus niger. After hydrolysis, the content of free astaxanthin in H. pluvialis oil was 18.8 mg/L, 7.83-times higher than that before hydrolysis (2.13 mg/L). The hydrolysis rate reached 75.4 %. These results indicate that the microchannel reactor can be useful for the production of free astaxanthin from its esters.  相似文献   

15.
The accumulation of partial glycerides such as monoglyceride (MG) and diglyceride (DG) is one of the rate-limiting steps in plant oil methanolysis catalyzed by Rhizopus oryzae producing triacylglycerol lipase. To convert partial glycerides efficiently into their corresponding methyl esters (MEs), we attempted to use a mono- and diacylglycerol lipase (mdlB) derived from Aspergillus oryzae. By considering cost efficiency, R. oryzae and recombinant mdlB-producing A. oryzae were immobilized independently within polyurethane foam biomass support particles and directly utilized as a whole-cell biocatalyst. The mdlB-producing A. oryzae effectively exhibited substrate specificity toward MG and DG and was then used for the methanolysis of intermediate products (approximately 82% ME), which were produced using R. oryzae. In the presence of 5% water, the use of mdlB-producing A. oryzae resulted in less than 0.1% of MG and DG, whereas a considerable amount of triglyceride was present in the final reaction mixture. On the basis of these results, we developed a packed-bed reactor (PBR) system, which consists of the first column with R. oryzae and the second column containing both R. oryzae and mdlB-producing A. oryzae. Ten repeated-batch methanolysis cycles in the PBR maintained a high ME content of over 90% with MG and DG at 0.08–0.69 and 0.22–1.45%, respectively, indicating that the PBR system can be used for long-term repeated-batch methanolysis with partial glycerides at low levels. The proposed method is therefore effective for improving enzymatic biodiesel production.  相似文献   

16.
An enzymatic process using a packed bed bioreactor with recirculation was developed for the scale-up synthesis of 2-ethylhexyl palmitate with a lipase from Candida sp. 99–125 immobilized on a fabric membrane by natural attachment to the membrane surface. Esterification was effectively performed by circulating the reaction mixture between a packed bed column and a substrate container. A maximum esterification yield of 98% was obtained. Adding molecular sieves and drying the immobilized lipase both decreased the water content at the reactor outlet and around the enzyme, which led to an increase in the rate of esterification. The long-term stability of the reactor was tested by continuing the reaction for 30 batches (over 300 h) with an average esterification yield of about 95%. This immobilized lipase bioreactor is scalable and is thus suitable for industrial production of 2-ethylhexyl palmitate.  相似文献   

17.
Free Candida antarctica lipase B (Lipozyme, CALB L®) was used to produce fatty acid ethyl esters (FAEE) from refined soybean oil in solvent-free media using the conventional (CHS) and microwave (MHS) heating systems. Statistical analyses (95% confidence level) for both reaction products, FAEE and free fatty acids (FFA), were performed. An increase in ethanol:oil molar ratio decreased the catalytic performance of CALB L (p?<?.05). The best conditions using the microwave radiation were a molar ratio of ethanol:oil of 3:1, a water content of 20.3?wt.% and an enzyme loading of 3?wt.% and this resulted in a total ester content of 64.7% in 15?min, while the same condition using the conventional heating gave only 21.4%. Moreover, the reaction equilibrium was reached 16 times faster with microwave than with conventional heating. High ethanol:oil molar ratios had a negative effect on FAEE synthesis with both CHS and MHS, probably due to the partial inactivation of the enzymes. MHS improved the reaction performance of CALB L, but other process parameters will have to be optimized to enhance the resulting FAEE yields. The recovery and reuse of CALB L using a MHS was demonstrated. Hence, the use of microwave radiation under the conditions applied in this study was not detrimental to the catalytic performance of CALB L for at least one reuse.  相似文献   

18.
Using lipase catalysed, enzymatic esterification as a model reaction, we successfully demonstrate the use of miniaturized technology for biocatalytic reactions. Benchmarked against batch reactions, nine alkyl esters have been synthesized effectively, using Novozyme 435 in a pressure driven, packed-bed, miniaturized, continuous flow reactor. In some cases close to 100% ester conversions were obtained. The paper also demonstrates the ability to screen the enzyme for substrate specificity.  相似文献   

19.
Adsorption of proteins from a crude preparation containing a lipase from Aspergillus niger on microporous polypropylene hollow fibers was studied at six different temperatures. Langmuir isotherms accurately describe the overall adsorption equilibria. Lipase is selectively adsorbed relative to the other proteins in the crude preparation. Hence, immobilization also provides further purification of the lipase. The predictions of the Langmuir model for the change in the specific activity of lipase upon adsorption are consistent with experimental results. The loading capacity of the hollow fibers decreases and the adsorption constant increases as temperature is increased. This effect is more significant in the case of lipolytic activity than it is for the total amount of adsorbed protein. Small, positive enthalpy changes are associated with the adsorption of lipase on these hydrophobic membranes.  相似文献   

20.
Lipase-catalyzed synthesis of fatty acid sugar esters through direct esterification was performed in 2-methyl 2-butanol as solvent. Fructose and saturated fatty acids were used as substrates and the reaction was catalyzed by immobilized Candida antarctica lipase. The effect of the initial fructose/acyl donor molar ratio and the carbon-chain length of the acyl donor as well as their reciprocal interactions on the reaction performance were investigated. For this purpose, an experimental design taking into account variations of the molar ratio (from 1:1 to 1:5) and the carbon-chain length of the fatty acid (from C8 to C18) was employed. Statistical analysis of the data indicated that the two factors as well as their interactions had significant effects on the sugar esters synthesis. The obtained results showed that whatever the molar ratio used, the highest concentration (73 g l−1), fructose and fatty acid conversion yields (100% and 80%, respectively) and initial reaction rate (40 g l−1 h−1) were reached when using the C18 fatty acid as acyl donor. Low molar ratios gave the best fatty acid conversion yields and initial reaction rates, whereas the best total sugar ester concentrations and fructose conversion yields were obtained for high molar ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号