首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant soluble CD134 (sCD134) facilitated feline immunodeficiency virus (FIV) entry into CXCR4-positive, cell surface CD134-negative target cells. sCD134-activated entry was dose dependent and CXCR4 dependent. We used the sCD134 activation system to explore the neutralization by four anti-V3 monoclonal antibodies (MAbs). V3 MAbs weakly neutralized FIV infection using target cells expressing both CD134 and CXCR4 but potently inhibited sCD134-activated entry into target cells expressing CXCR4 alone. These findings provide direct evidence for a sequential interaction of FIV Env with CD134 and CXCR4 and reveal the presence of a cryptic epitope in V3 that is masked in the mature envelope oligomers.  相似文献   

2.
Disease progression of feline immunodeficiency virus (FIV) infection is characterized by up-regulation of B7.1 and B7.2 costimulatory molecules and their ligand CTLA4 on CD4(+) and CD8(+) T cells. The CD4(+)CTLA4(+)B7(+) phenotype described in FIV(+) cats is reminiscent of CD4(+)CD25(+)CTLA4(+) cells, a phenotype described for immunosuppressive T regulatory (Treg) cells. In the present study, we describe the phenotypic and functional characteristics of CD4(+)CD25(+) T cells in PBMC and lymph nodes (LN) of FIV(+) and control cats. Similar to Treg cells, feline CD4(+)CD25(+) but not CD4(+)CD25(-) T cells directly isolated from LN of FIV(+) cats do not produce IL-2 and fail to proliferate in response to mitogen stimulation. Unstimulated CD4(+)CD25(+) T cells from FIV(+) cats significantly suppress the proliferative response and the IL-2 production of Con A-stimulated autologous CD4(+)CD25(-) T cells compared with unstimulated CD4(+)CD25(+) T cells from FIV(-) cats. Flow-cytometric analysis confirmed the apparent activation phenotype of the CD4(+)CD25(+) cells in LN of chronically FIV(+) cats, because these cells showed significant up-regulation of expression of costimulatory molecules B7.1, B7.2, and CTLA4. These FIV-activated, anergic, immunosuppressive CD25(+)CTLA4(+)B7(+)CD4(+) Treg-like cells may contribute to the progressive loss of T cell immune function that is characteristic of FIV infection.  相似文献   

3.
CD134 is a primary binding receptor for feline immunodeficiency virus (FIV), and with CXCR4 facilitates infection of CD4(+) T cells. Human CD134 fails to support FIV infection. To delineate the regions important for defining virus specificity of CD134, we exchanged domains between human and feline CD134. The binding site for FIV surface glycoprotein (SU) is located in domain 1, in a region distinct from the natural ligand (CD134L)-binding site. Mutagenesis showed that Asp60 and Asp62 are required for interaction with FIV, and modeling studies localized these two residues to the outer edge of domain 1. Substitutions S60D and N62D, in conjunction with H45S, R59G and V64K, imparted both FIV SU binding and receptor function to human CD134. Finally, we demonstrated that soluble CD134 facilitates infection of CD134(-) CXCR4(+) target cells in a manner analogous to CD4 augmentation of HIV infection.  相似文献   

4.
5.
Lentivirus infection activates CD4+ CD25+ T regulatory (Treg) cells. Activation of Treg cells may be due to direct virus infection or chronic antigenic stimulation. Herein we demonstrate that in vitro feline immunodeficiency virus (FIV) infection, but not UV-inactivated virus, activates Treg cells as measured by immunosuppressive function and upregulation of GARP, FoxP3, and membrane-bound transforming growth factor β (TGF-β). These data demonstrate for the first time that AIDS lentiviruses infect and activate Treg cells, potentially contributing to immune dysfunction.  相似文献   

6.
7.
A heterologous feline immunodeficiency virus (FIV) expression system permitted high-level expression of FIV proteins and efficient production of infectious FIV in human cells. These results identify the FIV U3 element as the sole restriction to the productive phase of replication in nonfeline cells. Heterologous FIV expression in a variety of human cell lines resulted in profuse syncytial lysis that was FIV env specific, CD4 independent, and restricted to cells that express CXCR4, the coreceptor for T-cell-line-adapted strains of human immunodeficiency virus. Stable expression of human CXCR4 in CXCR4-negative human and rodent cell lines resulted in extensive FIV Env-mediated, CXCR4-dependent cell fusion and infection. In feline cells, stable overexpression of human CXCR4 resulted in increased FIV infectivity and marked syncytium formation during FIV replication or after infection with FIV Env-expressing vectors. The use of CXCR4 is a fundamental feature of lentivirus biology independent of CD4 and a shared cellular link to infection and cytopathicity for distantly related lentiviruses that cause AIDS. Their conserved use implicates chemokine receptors as primordial lentivirus receptors.  相似文献   

8.
9.
A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells   总被引:1,自引:0,他引:1  
The IL-2/IL-2R interaction is important for development and peripheral homeostasis of T regulatory (Treg) cells. IL-2- and IL-2R-deficient mice are not completely devoid of Foxp3+ cells, but rather lack population of mature CD4+CD25+Foxp3high Treg cells and contain few immature CD4+CD25-Foxp3low T cells. Interestingly, common gamma chain (gammac) knockout mice have been shown to have a near complete absence of Foxp3+ Treg cells, including the immature CD25-Foxp3low subset. Therefore, other gammac-cytokine(s) must be critically important during thymic development of CD4+CD25+Foxp3+ Treg cells apart from the IL-2. The present study was undertaken to determine whether the gammac-cytokines IL-7 or IL-15 normally contribute to expression of Foxp3 and Treg cell production. These studies revealed that mice double deficient in IL-2Rbeta and IL-7Ralpha contained a striking lack in the CD4+Foxp3+ population and the Treg cell defect recapitulated the gammac knockout mice. In the absence of IL-7R signaling, IL-15/IL-15R interaction is dispensable for the production of CD4+CD25+Foxp3+ Treg cells, indicating that normal thymic Treg cell production likely depends on signaling through both IL-2 and IL-7 receptors. Selective thymic reconstitution of IL-2Rbeta in mice double deficient in IL-2Rbeta and IL-7Ralpha established that IL-2Rbeta is dominant and sufficient to restore production of Treg cells. Furthermore, the survival of peripheral CD4+Foxp3low cells in IL-2Rbeta-/- mice appears to depend upon IL-7R signaling. Collectively, these data indicate that IL-7R signaling contributes to Treg cell development and peripheral homeostasis.  相似文献   

10.
Miyazawa T 《Uirusu》2005,55(1):27-34
Lentiviruses consist of primate lentiviruses, ungulate lentiviruses and feline immunodeficiency virus (FIV). The primate lentiviruses utilize CD4 and chemokine receptors as a primary receptor and coreceptors, respectively. Recently we found that FIV utilizes CD134 and CXCR4 as a primary receptor and a coreceptor, respectively. FIV utilizes feline CD134 but not human CD134, whereas it can utilize both feline and human CXCR4. Exceptionally an FIV laboratory strain can infect human cells via CXCR4 only by the CD134-independent manner. Similarly several strains of primate lentiviruses also infect cells by the CD4-independent manner. In this review, the evolution of the lentiviruses and possible mechanism for lentiviral cross-species transmission is discussed.  相似文献   

11.
The feline immunodeficiency virus (FIV) targets activated CD4-positive helper T cells preferentially, inducing an AIDS-like immunodeficiency in its natural host species, the domestic cat. The primary receptor for FIV is CD134, a member of the tumor necrosis factor receptor superfamily, and all primary viral strains tested to date use CD134 for infection. We examined the expression of CD134 in the cat using a novel anti-feline CD134 monoclonal antibody (MAb), 7D6, and showed that as in rats and humans, CD134 expression is restricted tightly to CD4+, and not CD8+, T cells, consistent with the selective targeting of these cells by FIV. However, FIV is also macrophage tropic, and in chronic infection the viral tropism broadens to include B cells and CD8+ T cells. Using 7D6, we revealed CD134 expression on a B220-positive (B-cell) population and on cultured macrophages but not peripheral blood monocytes. Moreover, macrophage CD134 expression and FIV infection were enhanced by activation in response to bacterial lipopolysaccharide. Consistent with CD134 expression on human and murine T cells, feline CD134 was abundant on mitogen-stimulated CD4+ T cells, with weaker expression on CD8+ T cells, concordant with the expansion of FIV into CD8+ T cells with progression of the infection. The interaction between FIV and CD134 was probed using MAb 7D6 and soluble CD134 ligand (CD134L), revealing strain-specific differences in sensitivity to both 7D6 and CD134L. Infection with isolates such as PPR and B2542 was inhibited well by both 7D6 and CD134L, suggesting a lower affinity of interaction. In contrast, GL8, CPG, and NCSU were relatively refractory to inhibition by both 7D6 and CD134L and, accordingly, may have a higher-affinity interaction with CD134, permitting infection of cells where CD134 levels are limiting.  相似文献   

12.
CD4(+)CD25(+) T regulatory (Treg) cells are a CD4(+) T cell subset involved in the control of the immune response. In vitro, murine CD4(+)CD25(+) Treg cells inhibit CD4(+)CD25(-) Th cell proliferation induced by anti-CD3 mAb in the presence of APCs. The addition of IL-4 to cocultured cells inhibits CD4(+)CD25(+) Treg cell-mediated suppression. Since all cell types used in the coculture express the IL-4Ralpha chain, we used different combinations of CD4(+)CD25(-) Th cells, CD4(+)CD25(+) Treg cells, and APCs from wild-type IL-4Ralpha(+/+) or knockout IL-4Ralpha(-/-) mice. Results show that the engagement of the IL-4Ralpha chain on CD4(+)CD25(-) Th cells renders these cells resistant to suppression. Moreover, the addition of IL-4 promotes proliferation of IL-4Ralpha(+/+)CD4(+)CD25(+) Treg cells, which preserve full suppressive competence. These findings support an essential role of IL-4 signaling for CD4(+)CD25(-) Th cell activation and indicate that IL-4-induced proliferation of CD4(+)CD25(+) Treg cells is compatible with their suppressive activity.  相似文献   

13.
Murine CD4(+)CD25(+) T regulatory (Treg) cells were cocultured with CD4(+)CD25(-) Th cells and APCs or purified B cells and stimulated by anti-CD3 mAb. Replacement of APCs by B cells did not significantly affect the suppression of CD4(+)CD25(-) Th cells. When IL-4 was added to separate cell populations, this cytokine promoted CD4(+)CD25(-) Th and CD4(+)CD25(+) Treg cell proliferation, whereas the suppressive competence of CD4(+)CD25(+) Treg cells was preserved. Conversely, IL-4 added to coculture of APCs, CD4(+)CD25(-) Th cells, and CD4(+)CD25(+) Treg cells inhibited the suppression of CD4(+)CD25(-) Th cells by favoring their survival through the induction of Bcl-2 expression. At variance, suppression was not affected by addition of IL-13, although this cytokine shares with IL-4 a receptor chain. When naive CD4(+)CD25(-) Th cells were replaced by Th1 and Th2 cells, cell proliferation of both subsets was equally suppressed, but suppression was less pronounced compared with that of CD4(+)CD25(-) Th cells. IL-4 production by Th2 cells was also inhibited. These results indicate that although CD4(+)CD25(+) Treg cells inhibit IL-4 production, the addition of IL-4 counteracts CD4(+)CD25(+) Treg cell-mediated suppression by promoting CD4(+)CD25(-) Th cell survival and proliferation.  相似文献   

14.
Germline encoded pattern recognition receptors, such as TLRs, provide a critical link between the innate and adaptive immune systems. There is also evidence to suggest that pathogen-associated molecular patterns may have the capacity to modulate immune responses via direct effects on CD4+ T cells. Given the key role of both CD4+CD25+ T regulatory (Treg) cells and the TLR5 ligand flagellin in regulating mucosal immune responses, we investigated whether TLR5 may directly influence T cell function. We found that both human CD4+CD25+ Treg and CD4+CD25- T cells express TLR5 at levels comparable to those on monocytes and dendritic cells. Costimulation of effector T cells with anti-CD3 and flagellin resulted in enhanced proliferation and production of IL-2, at levels equivalent to those achieved by costimulation with CD28. In contrast, costimulation with flagellin did not break the hyporesponsiveness of CD4+CD25+ Treg cells, but rather, potently increased their suppressive capacity and enhanced expression of FOXP3. These observations suggest that, in addition to their APC-mediated indirect effects, TLR ligands have the capacity to directly regulate T cell responses and modulate the suppressive activity of Treg cells.  相似文献   

15.
Different functions have been attributed to natural regulatory CD4+CD25+FOXP+ (Treg) cells during malaria infection. Herein, we assessed the role for Treg cells during infections with lethal (DS) and non-lethal (DK) Plasmodium chabaudi adami parasites, comparing the levels of parasitemia, inflammation and anaemia. Independent of parasite virulence, the population of splenic Treg cells expanded during infection, and the absolute numbers of activated CD69+ Treg cells were higher in DS-infected mice. In vivo depletion of CD25+ T cells, which eliminated 80% of CD4+FOXP3+CD25+ T cells and 60-70% of CD4+FOXP3+ T cells, significantly decreased the number of CD69+ Treg cells in mice with lethal malaria. As a result, higher parasite burden and morbidity were measured in the latter, whereas the kinetics of infection with non-lethal parasites remained unaffected. In the absence of Treg cells, parasite-specific IFN-gamma responses by CD4+ T cells increased significantly, both in mice with lethal and non-lethal infections, whereas IL-2 production was only stimulated in mice with non-lethal malaria. Following the depletion of CD25+ T cells, the production of IL-10 by CD90(-) cells was also enhanced in infected mice. Interestingly, a potent induction of TNF-alpha and IFN-gamma production by CD4+ and CD90(-) lymphocytes was measured in DS-infected mice, which also suffered severe anaemia earlier than non-depleted infected controls. Taken together, our data suggest that the expansion and activation of natural Treg cells represent a counter-regulatory response to the overwhelming inflammation associated with lethal P.c. adami. This response to infection involves TH1 lymphocytes as well as cells from the innate immune system.  相似文献   

16.
Bicyclams are low-molecular-weight anti-human immunodeficiency virus (HIV) agents that have been shown to act as potent and selective CXC chemokine receptor 4 (CXCR4) antagonists. Here, we demonstrate that bicyclams are potent inhibitors of feline immunodeficiency virus (FIV) replication when evaluated in Crandell feline kidney (CRFK) cells. With a series of bicyclam derivatives, 50% inhibitory concentrations (IC50s) against FIV were obtained in this cell system that were comparable to those obtained for HIV-1 IIIB replication in the human CD4(+) MT-4 T-cell line. The bicyclams were also able to block FIV replication in feline thymocytes, albeit at higher concentrations than in the CRFK cells. The prototype bicyclam AMD3100, 1-1'-[1,4-phenylene-bis(methylene)]-bis(1,4,8, 11-tetraazacyclotetradecane), was only fourfold less active in feline thymocytes (IC50, 62 ng/ml) than in CRFK cells (IC50, 14 ng/ml). AMD2763, 1,1'-propylene-bis(1,4,8, 11-tetraazacyclotetradecane), which is a less potent CXCR4 antagonist, was virtually inactive against FIV in feline thymocytes (IC50, >66.5 microgram/ml), while it was clearly active in CRFK cells (IC50, 0.9 microgram/ml). The CXC chemokine stromal-cell-derived factor 1alpha had anti-FIV activity in CRFK cells (IC50, 200 ng/ml) but not in feline thymocytes (IC50, >2.5 microgram/ml). When primary FIV isolates were evaluated for their drug susceptibility in feline thymocytes, the bicyclams AMD3100 and its Zn2+ complex, AMD3479, inhibited all six primary isolates at equal potency. The marked susceptibility of FIV to the bicyclams suggests that FIV predominantly uses feline CXCR4 for entering its target cells.  相似文献   

17.
The T cell coinhibitory receptor CTLA-4 has been implicated in the down-regulation of T cell function that is a quintessential feature of chronic human filarial infections. In a laboratory model of filariasis, Litomosoides sigmodontis infection of susceptible BALB/c mice, we have previously shown that susceptibility is linked both to a CD4+ CD25+ regulatory T (Treg) cell response, and to the development of hyporesponsive CD4+ T cells at the infection site, the pleural cavity. We now provide evidence that L. sigmodontis infection drives the proliferation and activation of CD4+ Foxp3+ Treg cells in vivo, demonstrated by increased uptake of BrdU and increased expression of CTLA-4, Foxp3, GITR, and CD25 compared with naive controls. The greatest increases in CTLA-4 expression were, however, seen in the CD4+ Foxp3- effector T cell population which contained 78% of all CD4+ CTLA-4+ cells in the pleural cavity. Depletion of CD25+ cells from the pleural CD4+ T cell population did not increase their Ag-specific proliferative response in vitro, suggesting that their hyporesponsive phenotype is not directly mediated by CD4+ CD25+ Treg cells. Once infection had established, killing of adult parasites could be enhanced by neutralization of CTLA-4 in vivo, but only if performed in combination with the depletion of CD25+ Treg cells. This work suggests that during filarial infection CTLA-4 coinhibition and CD4+ CD25+ Treg cells form complementary components of immune regulation that inhibit protective immunity in vivo.  相似文献   

18.
Human immunodeficiency virus (HIV) causes a long, asymptomatic infection characterized by normal to elevated numbers of circulating CD8+ cells and a progressive decline in CD4+ cells. It has been speculated that HIV-specific antiviral activity driven by CD8+ T cells may control viral replication during this period and maintain the clinically asymptomatic stage of disease. The disease induced in cats by feline immunodeficiency virus (FIV) is similar to HIV in that it is characterized by a long asymptomatic stage with a progressive decline in CD4+ cells, culminating in AIDS. In the present study, we demonstrate that FIV is more readily isolated from CD8+ T-cell-depleted peripheral blood mononuclear cells (PBMC) of FIV-infected cats than from unfractionated PBMC cultures. In addition, CD8+ T cells isolated from FIV-positive cats demonstrating anti-FIV activity in PBMC cultures inhibit FIV infection of FCD4E cells in vitro. Anti-FIV activity is not found in FIV- negative cats and is not characteristic of cats acutely infected with FIV but is present in the majority of chronically infected, clinically asymptomatic and symptomatic cats. Decreases in plasma and cell-associated viremia during the acute-stage FIV infection appears to precede the appearance of CD8+ anti-FIV cells in the circulation. In summary, this study demonstrates a population(s) of CD8+ T cells in chronically FIV-infected cats capable of suppressing FIV replication in cultured PBMC. The significance of anti-FIV CD8+ cells in the immunopathogenesis of the infection and disease progression has yet to be determined.  相似文献   

19.
Feline CXCR4 and CCR5 were expressed in feline cells as fusion proteins with enhanced green fluorescent protein (EGFP). Expression of the EGFP fusion proteins was localized to the cell membrane, and surface expression of CXCR4 was confirmed by using a cross-species-reactive anti-CXCR4 monoclonal antibody. Ectopic expression of feline CCR5 enhanced expression of either endogenous feline CXCR4 or exogenous feline or human CXCR4 expressed from a retrovirus vector, indicating that experiments investigating the effect of CCR5 expression on feline immunodeficiency virus (FIV) infection must be interpreted with caution. Susceptibility to infection with cell culture-adapted strains of FIV or to syncytium formation following transfection with a eukaryotic vector expressing an env gene from a cell culture-adapted strain of virus correlated with expression of either human or feline CXCR4, whereas feline CCR5 had no effect. In contrast, neither CXCR4 nor CCR5 rendered cells permissive to either productive infection with primary strains of FIV or syncytium formation following transfection with primary env gene expression vectors. Screening a panel of Ghost cell lines expressing diverse human chemokine receptors confirmed that CXCR4 alone supported fusion mediated by the FIV Env from cell culture-adapted viruses. CXCR4 expression was upregulated in Ghost cells coexpressing CXCR4 and CCR5 or CXCR4, CCR5, and CCR3, and susceptibility to FIV infection could be correlated with the level of CXCR4 expression. The data suggest that beta-chemokine receptors may influence FIV infection by modulating the expression of CXCR4.  相似文献   

20.
The env open reading frames of African lion (Panthera leo) lentivirus (feline immunodeficiency virus [FIV(Ple)]) subtypes B and E from geographically distinct regions of Africa suggest two distinct ancestries, with FIV(Ple)-E sharing a common ancestor with the domestic cat (Felis catus) lentivirus (FIV(Fca)). Here we demonstrate that FIV(Ple)-E and FIV(Fca) share the use of CD134 (OX40) and CXCR4 as a primary receptor and coreceptor, respectively, and that both lion CD134 and CXCR4 are functional receptors for FIV(Ple)-E. The shared usage of CD134 and CXCR4 by FIV(Fca) and FIV(Ple)-E may have implications for in vivo cell tropism and the pathogenicity of the E subtype among free-ranging lion populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号