首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.  相似文献   

2.
The purpose of this study was to examine the effect of endurance training on oxygen uptake (VO(2)) kinetics during moderate [below the lactate threshold (LT)] and heavy (above LT) treadmill running. Twenty-three healthy physical education students undertook 6 wk of endurance training that involved continuous and interval running training 3-5 days per week for 20-30 min per session. Before and after the training program, the subjects performed an incremental treadmill test to exhaustion for determination of the LT and the VO(2 max) and a series of 6-min square-wave transitions from rest to running speeds calculated to require 80% of the LT and 50% of the difference between LT and maximal VO(2). The training program caused small (3-4%) but significant increases in LT and maximal VO(2) (P<0.05). The VO(2) kinetics for moderate exercise were not significantly affected by training. For heavy exercise, the time constant and amplitude of the fast component were not significantly affected by training, but the amplitude of the VO(2) slow component was significantly reduced from 321+/-32 to 217+/-23 ml/min (P<0.05). The reduction in the slow component was not significantly correlated to the reduction in blood lactate concentration (r = 0. 39). Although the reduction in the slow component was significantly related to the reduction in minute ventilation (r = 0.46; P<0.05), it was calculated that only 9-14% of the slow component could be attributed to the change in minute ventilation. We conclude that the VO(2) slow component during treadmill running can be attenuated with a short-term program of endurance running training.  相似文献   

3.
The purpose of this study was to set up a protocol of intermittent exercise to train young basketball players. Twenty-one players were asked to complete (a) an incremental test to determine maximal oxygen uptake (VO2max), the speed at the ventilatory threshold (vthr) and the energy cost of "linear" running (Cr) and (b) an intermittent test composed of 10 shuttle runs of 10-second duration and 30-seconds of recovery (total duration: about 6 minutes). The exercise intensity (the running speed, vi) was set at 130% of vthr. During the intermittent tests, oxygen uptake (VO2) and blood lactate concentration (Lab) were measured. The average pretraining VO2 calculated for a single bout (131 ± 9 ml · min(-1) kg(-1)) was about 2.4 times greater than the subjects' measured VO2max (54.7 ± 4.6 ml · min(-1) · kg(-1)). The net energy cost of running (9.2 ± 0.9 J · m(-1) · kg(-1)) was about 2.4 times higher than that measured at constant "linear" speed (3.9 ± 0.3 J · m(-1) · kg(-1)). The intermittent test was repeated after 7 weeks of training: 9 subjects (control group [CG]) maintained their traditional training schedule, whereas for 12 subjects (experimental group [EG]) part of the training was replaced by intermittent exercise (the same shuttle test as described above). After training, the VO2 measured during the intermittent test was significantly reduced (p < 0.05) in both groups (-10.9% in EG and - 4.6 in CG %), whereas Lab decreased significantly only for EG (-31.5%). These data suggest that this training protocol is effective in reducing lactate accumulation in young basketball players.  相似文献   

4.
The mechanisms responsible for the oxygen uptake (VO2) slow component during high-intensity exercise have yet to be established. In order to explore the possibility that the VO2 slow component is related to the muscle contraction regimen used, we examined the pulmonary VO2 kinetics during constant-load treadmill and cycle exercise at an exercise intensity that produced the same level of lactacidaemia for both exercise modes. Eight healthy subjects, aged 22-37 years, completed incremental exercise tests to exhaustion on both a cycle ergometer and a treadmill for the determination of the ventilatory threshold (defined as the lactate threshold, Th1a) and maximum VO2 (VO2max). Subsequently, the subjects completed two "square-wave" transitions from rest to a running speed or power output that required a VO2 that was halfway between the mode-specific Th1a and VO2max. Arterialised blood lactate concentration was determined immediately before and after each transition. The VO2 responses to the two transitions for each exercise mode were time-aligned and averaged. The increase in blood lactate concentration produced by the transitions was not significantly different between cycling [mean (SD) 5.9 (1.5) mM] and running [5.5 (1.6) mM]. The increase in VO2 between 3 and 6 min of exercise; (i.e. the slow component) was significantly greater in cycling than in running, both in absolute terms [290 (102) vs 200 (45) ml x min(-1); P<0.05] and as a proportion of the total VO2 response above baseline [10 (3)% vs 6 (1)%; P < 0.05]. These data indicate that: (a) a VO2 slow component does exist for high-intensity treadmill running, and (b) the magnitude of the slow component is less for running than for cycling at equivalent levels of lactacidaemia. The greater slow component observed in cycling compared to running may be related to differences in the muscle contraction regimen that is required for the two exercise modes.  相似文献   

5.
The objective of the present study was to compare pulmonary gas exchange kinetics (VO2 kinetics) and time to exhaustion (Tlim) between trained and untrained individuals during severe exercise performed on a cycle ergometer and treadmill. Eleven untrained males in running (UR) and cycling (UC), nine endurance cyclists (EC), and seven endurance runners (ER) were submitted to the following tests on separate days: (i) incremental test for determination of maximal oxygen uptake (VO2max) and the intensity associated with the achievement of VO2max (IVO2max) on a mechanical braked cycle ergometer (EC and UC) and on a treadmill (ER and UR); (ii) all-out exercise bout performed at IVO2max to determine the time to exhaustion at IVO2max (Tlim) and the time constant of oxygen uptake kinetics (tau). The tau was significantly faster in trained group, both in cycling (EC = 28.2 +/- 4.7s; UC = 63.8 +/- 25.0s) and in running (ER = 28.5 +/- 8.5s; UR = 59.3 +/- 12.0s). Tlim of untrained was significantly lower in cycling (EC = 384.4 +/- 66.6s vs. UC; 311.1 +/- 105.7 s) and higher in running (ER = 309.2 +/- 176.6 s vs. UR = 439.8 +/- 104.2 s). We conclude that the VO2 kinetic response at the onset of severe exercise, carried out at the same relative intensity is sensitive to endurance training, irrespective of the exercise type. The endurance training seems to differently influence Tlim during exercise at IVO2max in running and cycling.  相似文献   

6.
Seeking to develop a simple ambulatory test of maximal aerobic power (VO(2 max)), we hypothesized that the ratio of inverse foot-ground contact time (1/t(c)) to heart rate (HR) during steady-speed running would accurately predict VO(2 max). Given the direct relationship between 1/t(c) and mass-specific O(2) uptake during running, the ratio 1/t(c). HR should reflect mass-specific O(2) pulse and, in turn, aerobic power. We divided 36 volunteers into matched experimental and validation groups. VO(2 max) was determined by a treadmill test to volitional fatigue. Ambulatory monitors on the shoe and chest recorded foot-ground contact time (t(c)) and steady-state HR, respectively, at a series of submaximal running speeds. In the experimental group, aerobic fitness index (1/t(c). HR) was nearly constant across running speed and correlated with VO(2 max) (r = 0.90). The regression equation derived from data from the experimental group predicted VO(2 max) from the 1/t(c). HR values in the validation group within 8.3% and 4.7 ml O(2) x kg(-1) x min(-1) (r = 0.84) of measured values. We conclude that simultaneous measurements of foot-ground constant times and heart rates during level running at a freely chosen constant speed can provide accurate estimates of maximal aerobic power.  相似文献   

7.
The improved glucose tolerance and increased insulin sensitivity associated with regular exercise appear to be the result, in large part, of the residual effects of the last bout of exercise. To determine the effects of exercise intensity on this response, glucose tolerance and the insulin response to a glucose load were determined in seven well-trained male subjects [maximal O2 uptake (VO2max) = 58 ml.kg-1.min-1] and in seven nontrained male subjects (VO2max = 49 ml.kg-1.min-1) in the morning after an overnight fast 1) 40 h after the last training session (control), 2) 14 h after 40 min of exercise on a cycle ergometer at 40% VO2max, and 3) 14 h after 40 min of exercise at 80% VO2max. Subjects replicated their diets for 3 days before each test and ate a standard meal the evening before the oral glucose tolerance test. No differences in the 3-h insulin or glucose response were observed between the control trial and before exercise at either 40 or 80% VO2max in the trained subjects. In the nontrained subjects the plasma insulin response was decreased by 40% after a single bout of exercise at either 40 or 80% VO2max (7.0 X 10(3) vs. 5.0 X 10(3), P less than 0.05; 3.8 X 10(3) microU.ml-1.180 min-1, P less than 0.01). The insulin response after a single bout of exercise in the nontrained subjects was comparable with the insulin responses found in the trained subjects for the control and exercise trials.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The purpose of this study was to investigate the effect of a short-term Swiss ball training on core stability and running economy. Eighteen young male athletes (15.5 +/- 1.4 years; 62.5 +/- 4.7 kg; sigma9 skinfolds 78.9 +/- 28.2 mm; VO2max 55.3 +/- 5.7 ml.kg(-1).min(-1)) were divided into a control (n = 10) and experimental (n = 8) groups. Athletes were assessed before and after the training program for stature, body mass, core stability, electromyographic activity of the abdominal and back muscles, treadmill VO2max, running economy, and running posture. The experimental group performed 2 Swiss ball training sessions per week for 6 weeks. Data analysis revealed a significant effect of Swiss ball training on core stability in the experimental group (p < 0.05). No significant differences were observed for myoelectric activity of the abdominal and back muscles, treadmill VO2max, running economy, or running posture in either group. It appears Swiss ball training may positively affect core stability without concomitant improvements in physical performance in young athletes. Specificity of exercise selection should be considered.  相似文献   

9.
Six trained male cyclists and six untrained but physically active men participated in this study to test the hypothesis that the use of percentage maximal oxygen consumption (%VO2max) as a normalising independent variable is valid despite significant differences in the absolute VO2max of trained and untrained subjects. The subjects underwent an exercise test to exhaustion on a cycle ergometer to determine VO2max and lactate threshold. The subjects were grouped as trained (T) if their VO2max exceeded 60 ml.kg-1.min-1, and untrained (UT) if their VO2max was less than 50 ml.kg-1.min-1. The subjects were required to exercise on the ergometer for up to 40 min at power outputs that corresponded to approximately 50% and 70% VO2max. The allocation of each exercise session (50% or 70% VO2max) was random and each session was separated by at least 5 days. During these tests venous blood was taken 10 min before exercise (- 10 min), just prior to the commencement of exercise (0 min), after 20 min of exercise (20 min), at the end of exercise and 10 min postexercise (+ 10 min) and analysed for concentrations of cortisol, [Na+], [K+], [Cl-], glucose, free fatty acid, lactate [la-], [NH3], haemoglobin [Hb] and for packed cell volume. The oxygen consumption (VO2) and related variables were measured at two time intervals (14-15 and 34-35 min) during the prolonged exercise tests. Rectal temperature was measured throughout both exercise sessions. There was a significant interaction effect between the level of training and exercise time at 50% VO2max for heart rate (fc) and venous [la-].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In this experiment we studied the effect of different pedalling rates during cycling at a constant power output (PO) 132+/-31 W (mean+/-S.D.), corresponding to 50% VO2 max, on the oxygen uptake and the magnitude of the slow component of VO2 kinetics in humans. The PO corresponded to 50% of VO2 max, established during incremental cycling at a pedalling rate of 70 rev.min(-1). Six healthy men aged 22.2+/-2.0 years with VO2 max 3.89+/-0.92 l.min(-1), performed on separate days constant PO cycling exercise lasting 6 min at pedalling rates 40, 60, 80, 100 and 120 rev.min(-1), in random order. Antecubital blood samples for plasma lactate [La]pl and blood acid-base balance variables were taken at 1 min intervals. Oxygen uptake was determined breath-by-breath. The total net oxygen consumed throughout the 6 min cycling period at pedalling rates of 40, 60, 80, 100 and 120 rev.min(-1) amounted to 7.727+/-1.197, 7.705+/-1.548, 8.679+/-1.262, 9.945+/-1.435 and 13.720+/-1.862 l, respectively for each pedalling rate. The VO2 during the 6 min of cycling only rose slowly by increasing the pedalling rate in the range of 40-100 rev.min(-1). This increase, was 0.142 l per 20 rev.min(-1) on the average. Plasma lactate concentration during the sixth minute of cycling changed little within this range of pedalling rates: the values were 1.83+/-0.70, 1.80+/-0.48, 2.33+/-0.88 and 2.52+/-0.33 mmol.l(-1). The values of [La]pl reached in the 6th minute of cycling were not significantly different from the pre-exercise levels. Blood pH was also not affected by the increase of pedalling rate in the range of 40-100 rev.min(-1). However, an increase of pedalling rate from 100 to 120 rev.min(-1) caused a sudden increase in the VO2 amounting to 0.747 l per 20 rev.min(-1), accompanied by a significant increase in [La]pl from 1.21+/-0.26 mmol.l(-1) in pre-exercise conditions to 5.92+/-2.46 mmol.l(-1) reached in the 6th minute of cycling (P<0.01). This was also accompanied by a significant drop of blood pH, from 7.355+/-0.039 in the pre-exercise period to 7.296+/-0.060 in the 6th minute of cycling (P < 0.01). The mechanical efficiency calculated on the basis of the net VO2 reached between the 4th and the 6th minute of cycling amounted to 26.6+/-2.7, 26.4+/-2.0, 23.4+/-3.4, 20.3+/-2.6 and 14.7+/-2.2%, respectively for pedalling rates of 40, 60, 80, 100 and 120 rev.min(-1). No significant increase in the VO2 from the 3rd to the 6th min (representing the magnitude of the slow component of VO2 kinetics) was observed at any of the pedalling rates (-0.022+/-0.056, -0.009+/-0.029, 0.012+/-0.073, 0.030+/-0.081 and 0.122+/-0.176 l.min(-1) for pedalling rates of 40, 60, 80, 100 and 120 rev.min(-1), respectively). Thus a significant increase in [La]pl and a decrease in blood pH do not play a major role in the mechanism(s) responsible for the slow component of VO2 kinetics in humans.  相似文献   

11.
Dynamic exercise training of the elderly increases maximal O2 uptake (VO2max); however, the effects of training on the ventilation threshold (VET) have not been studied. VET was identified as the final point before the ventilatory equivalent for O2 (VE/VO2) increased, without an increase in the ventilatory equivalent for CO2 (VE/VCO2). Inactive elderly males (mean age, 62 yr) were randomly assigned to a control (C, n = 44) or activity (A, n = 45) group. VO2max and VET were determined from an incremental treadmill test. Initial VO2max was not different between the C (2.34 +/- 0.42 l X min-1) and A (2.28 +/- 0.44 l X min-1) groups, nor was there a significant difference in the VO2 at the VET (C = 1.39 +/- 0.26 l X min-1; A = 1.31 +/- 0.23 l X min-1). The activity group trained for 30 min/day, 3 days/wk at an intensity of approximately 65-80% of VO2max. After 1 yr of training the activity group exhibited an 18% increase in VO2max (A = 2.70 +/- 0.54 l X min-1), but the change in VET was not significant (A = 1.39 +/- 0.28 l X min-1). There was no significant change in VO2max (C = 2.45 +/- 0.68 l X min-1) or VET (C = 1.38 +/- 0.31 l X min-1) in the control group. VET/VO2max declined significantly in the activity group (from 58 to 52% of VO2max). Change in VET/VO2max with training was not correlated with the initial VO2max value. We conclude that increases in aerobic capacity are more readily effected than alterations of the VET in elderly subjects.  相似文献   

12.
This study investigated the effects of intensity and duration of exercise on lymphocyte proliferation as a measure of immunologic function in men of defined fitness. Three fitness groups--low [maximal O2 uptake (VO2max) = 44.9 +/- 1.5 ml O2.kg-1.min-1 and sedentary], moderate (VO2max = 55.2 +/- 1.6 ml O2.kg-1.min-1 and recreationally active), and high (VO2max = 63.3 +/- 1.8 ml O2.kg-1.min-1 and endurance trained)--and a mixed control group (VO2max = 52.4 +/- 2.3 ml O2.kg-1.min-1) participated in the study. Subjects completed four randomly ordered cycle ergometer rides: ride 1, 30 min at 65% VO2max; ride 2, 60 min at 30% VO2max; ride 3, 60 min at 75% VO2max; and ride 4, 120 min at 65% VO2max. Blood samples were obtained at various times before and after the exercise sessions. Lymphocyte responses to the T cell mitogen concanavalin A were determined at each sample time through the incorporation of radiolabeled thymidine [( 3H]TdR). Despite differences in resting levels of [3H]TdR uptake, a consistent depression in mitogenesis was present 2 h after an exercise bout in all fitness groups. The magnitude of the reduction in T cell mitogenesis was not affected by an increase in exercise duration. A trend toward greater reduction was present in the highly fit group when exercise intensity was increased. The reduction in lymphocyte proliferation to the concanavalin A mitogen after exercise was a short-term phenomenon with recovery to resting (preexercise) values 24 h after cessation of the work bout. These data suggest that single sessions of submaximal exercise transiently reduce lymphocyte function in men and that this effect occurs irrespective of subject fitness level.  相似文献   

13.
We hypothesized that the performance of prior heavy exercise would speed the phase 2 oxygen consumption (VO2) kinetics during subsequent heavy exercise in the supine position (where perfusion pressure might limit muscle O2 supply) but not in the upright position. Eight healthy men (mean +/- SD age 24 +/- 7 yr; body mass 75.0 +/- 5.8 kg) completed a double-step test protocol involving two bouts of 6 min of heavy cycle exercise, separated by a 10-min recovery period, on two occasions in each of the upright and supine positions. Pulmonary O2 uptake was measured breath by breath and muscle oxygenation was assessed using near-infrared spectroscopy (NIRS). The NIRS data indicated that the performance of prior exercise resulted in hyperemia in both body positions. In the upright position, prior exercise had no significant effect on the time constant tau of the VO2 response in phase 2 (bout 1: 29 +/- 10 vs. bout 2: 28 +/- 4 s; P = 0.91) but reduced the amplitude of the VO2 slow component (bout 1: 0.45 +/- 0.16 vs. bout 2: 0.22 +/- 0.14 l/min; P = 0.006) during subsequent heavy exercise. In contrast, in the supine position, prior exercise resulted in a significant reduction in the phase 2 tau (bout 1: 38 +/- 18 vs. bout 2: 24 +/- 9 s; P = 0.03) but did not alter the amplitude of the VO2 slow component (bout 1: 0.40 +/- 0.29 vs. bout 2: 0.41 +/- 0.20 l/min; P = 0.86). These results suggest that the performance of prior heavy exercise enables a speeding of phase 2 VO2 kinetics during heavy exercise in the supine position, presumably by negating an O2 delivery limitation that was extant in the control condition, but not during upright exercise, where muscle O2 supply was probably not limiting.  相似文献   

14.
Exercise training reverses endothelial dysfunction, but the effect in young, healthy subjects is less clear. We determined the influence of maximal oxygen uptake (VO2max) and a single bout of high-intensity exercise on flow-mediated dilatation (FMD), brachial artery diameter, peak blood flow, nitric oxide (NO) bioavailability, and antioxidant status in highly endurance-trained men and their sedentary counterparts. Ten men athletes (mean +/- SEM age 23.5 +/- 0.9 years, height 182.6 +/- 2.4 cm, weight 72.5 +/- 2.4 kg, VO2max 75.9 +/- 0.8 mL.kg.min) and seven healthy controls (age 25.4 +/- 1.2 years, height 183.9 +/- 3.74 cm, weight 92.8 +/- 3.9 kg, VO2max 47.7 +/- 1.7 mL.kg.min) took part in the study. FMD, brachial artery diameter, and peak blood flow were measured using echo-Doppler before, 1 hour, 24 hours, and 48 hours after a single bout of interval running for 5 x 5 minutes at 90% of maximal heart rate. NO bioavailability and antioxidant status in blood were measured at all time points. Maximal arterial diameter and peak flow were 10-15% (P < 0.02) and 28-35% (P < 0.02) larger, respectively, in athletes vs. controls at all time points, and similar FMD were observed, apart from a transient decay of FMD in athletes 1 hour post exercise. NO bioavailability increased significantly after exercise in both groups and decreased to baseline levels after 24 hours in controls but remained increased 80% and 93% above baseline 24 and 48 hours post exercise in athletes. Antioxidant status was equal in the two groups at baseline and increased by approximately 10% 1 hour post exercise, an effect that lasted for 24 hours. Athletes had larger arterial diameter but similar FMD as untrained subjects, i.e., athletes had larger capacity for blood transport compared with their untrained counterparts. The observed FMD, bioavailability of NO, and antioxidant status in blood were highly dependent on the time elapsed after the exercise session.  相似文献   

15.
This study evaluated the validity of the desktop CardioCoach metabolic system to measure VO2max and VEmax. Sixteen subjects (mean age = 19.5 +/- 3.2 years) completed 2 maximal graded exercise tests following the same protocol before and after 7 and 14 weeks of endurance training. Subjects' VO2max and VEmax were measured by either the CardioCoach or the ParvoMedics TrueOne 2400 metabolic measurement system (TrueOne). An alpha level of significance of p < 0.05 was maintained for all statistical analyses. The time to test completion and the final treadmill grade of the exercise tests performed by both the CardioCoach and the TrueOne increased over the 3 testing periods, confirming an improvement in cardiorespiratory fitness resulting from the 14 weeks of training. A linear growth curve analysis indicated that there were statistically significant differences between VO2max (ml x kg(-1) x min(-1)) as measured by the TrueOne and the CardioCoach before (44.4 +/- 5.0 and 49.3 +/- 5.4) and after 7 weeks (46.0 +/- 5.2 and 48.2 +/- 5.4) of training but not after 14 weeks of training (47.8 +/- 5.6 and 48.4 +/- 5.2). Significant differences also existed in VEmax (L x min(-1)) as measured by the TrueOne and the CardioCoach before (76.8 +/- 17.7 and 71.9 +/- 13.7), after 7 weeks (81.4 +/- 16.2 and 72.8 +/- 14.1), and after 14 weeks (86.8 +/- 19.4 and 74.2 +/- 13.1) of training. Although significant growth of VO2max (0.24 ml x kg(-1) x min(-1) x wk(-1)) and VEmax (0.71 L x min(-1) x wk(-1)) was measured by the TrueOne over 14 weeks of training, the CardioCoach was unable to detect growth in VO2max (-0.02 ml x kg(-1) x min(-1) x wk(-1)) or VEmax (0.17 L x min(-1) x wk(-1)). This study indicates that the CardioCoach did not accurately measure or monitor changes in VO2max or VEmax resulting from training.  相似文献   

16.
The purpose of this study was to investigate the relationship that age has on factors affecting running economy (RE) in competitive distance runners. Fifty-one male and female subelite distance runners (Young [Y]: 18-39 years [n = 18]; Master [M]: 40-59 years [n = 22]; and Older [O]: 60-older [n = 11]) were measured for RE, step rate, lactate threshold (LT), VO2max, muscle strength and endurance, flexibility, power, and body composition. An RE test was conducted at 4 different velocities (161, 188, 215, and 241 m·min(-1)), with subjects running for 5 minutes at each velocity. The steady-state VO2max during the last minute of each stage was recorded and plotted vs. speed, and a regression equation was formulated. A 1 × 3 analysis of variance revealed no differences in the slopes of the RE regression lines among age groups (y = 0.1827x - 0.2974; R2 = 0.9511 [Y]; y = 0.1988x - 1.0416; R2 = 0.9697 [M]; y = 0.1727x + 3.0252; R2 = 0.9618 [O]). The VO2max was significantly lower in the O group compared to in the Y and M groups (Y = 64.1 ± 3.2; M = 56.8 ± 2.7; O = 44.4 ± 1.7 mlO2·kg(-1)·min(-1)). The maximal heart rate and velocity @ LT were significantly different among all age groups (Y = 197 ± 4; M = 183 ± 2; O = 170 ± 6 b·min(-1) and Y = 289.7 ± 27.0; M = 251.5 ± 32.9; O = 212.3 ± 24.6 m·min(-1), respectively). The VO2max @ LT was significantly lower in the O group compared to in the Y and M groups (Y = 50.3 ± 2.0; M = 48.8 ± 2.9; O = 34.9 ± 3.2 mlO2·kg(-1)·min(-1)). The O group was significantly lower than in the Y and M groups in flexibility, power, and upper body strength. Multiple regression analyses showed that strength and power were significantly related to running velocity. The results from this cross-sectional analysis suggest that age-related declines in running performance are associated with declines in maximal and submaximal cardiorespiratory variables and declines in strength and power, not because of declines in running economy.  相似文献   

17.
Thirty-three college women (mean age = 21.8 years) participated in a 5 d X wk-1, 12 week training program. Subjects were randomly assigned to 3 groups, above lactate threshold (greater than LT) (N = 11; trained at 69 watts above the workload associated with LT), = LT (N = 12; trained at the work load associated with LT) and control (C) (N = 10). Subjects were assessed for VO2max, VO2LT, VO2LT/VO2max, before and after training, using a discontinuous 3 min incremental (starting at 0 watts increasing 34 watts each work load) protocol on a cycle ergometer (Monark). Respiratory gas exchange measures were determined using standard open circuit spirometry while LT was determined from blood samples taken immediately following each work load from an indwelling venous catheter located in the back of a heated hand. Body composition parameters were determined before and after training via hydrostatic weighing. Training work loads were equated so that each subject expended approximately 1465 kJ per training session (Monark cycle ergometer) regardless of training intensity. Pretraining, no significant differences existed between groups for any variable. Post training the greater than LT group had significantly higher VO2max (13%), VO2LT (47%) and VO2LT/VO2max (33%) values as compared to C (p less than .05). Within group comparisons revealed that none of the groups significantly changed VO2max as a result of training, only the greater than LT group showed a significant increase in VO2LT (48%) (p less than .05), while both the = LT and greater than LT group showed significant increases in VO2LT/VO2max (= LT 16%, greater than LT 42% (p less than .05)).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Maximal and submaximal metabolic and cardiovascular measures and work capacity were studied in control (n = 7) and experimental (n = 9) subjects (S's) during arm work prior to and following 10 wk of interval arm training. These measures were oxygen uptake (VO2), minute ventilation (VE), heart rate (HR), respiratory exchange ratio (R), cardiac output (Q), stroke volume (SV), and arteriovenous oxygen difference ((a--v)O2 diff). In addition, maximal oxygen uptake (VO2max) was measured in both groups during treadmill running. Experimental S's showed significant increases (P less than 0.01) in peak VO2 (438 ml.min-1), max VE (17.7 l.min-1), max (a--v)O2 diff (20.8 ml.l-1), and work time (9.2 min) during arm ergometry, while maximum values of Q, SV, HR, and R remained unchanged. In addition, submaximal heart rates were significantly lower during arm ergometry after training. VO2max during treadmill running remained essentially unchanged. No changes in metabolic and physiological measures were noted for the controls after the 10-wk training period. The results support the concept of training specificity for VO2max, and indicate that the improvement in peak VO2 in arm ergometry reflects enhanced oxygen utilization due to an expanded (a--v)O2 diff.  相似文献   

19.
Two experiments were carried out to compare the cardiorespiratory and metabolic effects of cross-country skiing and running training during two successive winters. Forty-year-old men were randomly assigned into skiing (n = 15 in study 1, n = 16 in study 2), running (n = 16 in study 1 and n = 16 in study 2) and control (n = 17 in study 1 and n = 16 in study 2) groups. Three subjects dropped out of the programme. The training lasted 9-10 weeks with 40-min exercise sessions three times each week. The training intensity was controlled at 75%-85% of the maximal oxygen consumption (VO2max) using portable heart rate metres and the mean heart rate was 156-157 beats.min-1 in the training groups. In the pooled data of the two studies the mean increase in the VO2max (in ml.min-1.kg-1) on a cycle ergometer was 17% for the skiing group, 13% for the running group and 2% for the control group. The increase in VO2max was highly significant in the combined exercise group compared to the control group but did not differ significantly between the skiing and running groups. The fasting serum concentrations of lipoproteins and insulin did not change significantly in any of the groups. These results suggested that training by cross-country skiing and running of the same duration and intensity at each session for 9-10 weeks improved equally the cardiorespiratory fitness of untrained middle-aged men.  相似文献   

20.
Junkyard training involves heavy, cumbersome implements and nontraditional movement patterns for unique training of athletes. This study assessed the metabolic demands of pushing and pulling a 1,960-kg motor vehicle (MV) 400 m in an all-out maximal effort. Six male, strength-trained athletes (29 +/- 5 years; 89 +/- 12 kg) completed 3 sessions. Sessions 1 and 2 were randomly assigned and entailed either pushing or pulling the MV. Oxygen consumption (VO(2)) and heart rate (HR) were measured continuously. Blood lactate was sampled immediately prior to and 5 minutes after sessions 1 and 2. Vertical jump was assessed immediately prior to and after sessions 1 and 2. During session 3 a treadmill VO(2)max test was conducted. No significant differences (p < 0.05) in VO(2), HR, or blood lactate occurred between pushing and pulling efforts. VO(2) and HR peaked in the first 100 m, and from 100 m on, VO(2) and HR averaged 65% and 96% of treadmill maximum values (VO(2)max = 50.3 ml x kg(-1) x min(-1); HRmax = 194 b x min(-1)). Blood lactate response from the push and pull averaged 15.6 mmol.L(-1), representing 131% of the maximal treadmill running value. Vertical jump decreased significantly pre to post in both conditions (mean = -10.1 cm, 17%). All subjects experienced dizziness and nausea. In conclusion, a 400-m MV push or pull is an exhausting training technique that requires a very high anaerobic energy output and should be considered an advanced form of training. Strength coaches must be aware of the ultra-high metabolic and neuromuscular stresses that can be imposed by this type of training and take these factors into consideration when plotting individualized training and recovery strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号