首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Six different fungal strains/isolates were selected after conducting a series of experiments of isolation and screening to evaluate their successful adaptation and growth to domestic wastewater sludge and its efficient bioconversion into compost. Two different fungi were grown in the same petri dish 4 cm apart in two culture media, potato dextrose agar (PDA) and malt extract agar (MEA). Fifteen different in-vitro interactions were studied and summarized according to five possible outcomes, i.e., mutual intermingling, partial mutual intermingling, inhibition at contact point, inhibition at a distance and replacement. The interaction of Trichoderma hazianum s Rifai with Phanerochaete chrysosporium 2094 was identified as mutual intermingling. The partial mutual intermingling of T. hazianum s with Mucor hiemalis Wehmer suggested compatibility of the two strains without showing any abnormal effects. Perhaps these two combinations may interact mutually in any mixed culture programme. The fungal strain Aspergillus versicolor Vuill performed as a strong repellent and all interactions exhibited deadlock/inhibition at a certain distance. The isolate RW-Pl 512 from the gill of a basidiomycete from a rotten wood stub actively replaced the strain M. hiemalis in in-vitro culture.  相似文献   

2.
A two-level fractional factorial design (FFD) was used to determine the effects of six factors, i.e. substrate (domestic wastewater sludge - DWS) and co-substrate concentration (wheat flour - WF), temperature, initial pH, inoculum size and agitation rate on the production of cellulase enzyme by Trichoderma harzianum in liquid state bioconversion. On statistical analysis of the results from the experimental studies, optimum process conditions were found to be temperature 32.5 degrees C, substrate concentration (DWS) 0.75% (w/w), co-substrate (WF) concentration 2% (w/w), initial pH 5, inoculum size 2% (v/w) and agitation 175 rpm. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) of 0.975. Cellulase activity reached 10.2 FPU/ml at day 3 during the fermentation process which indicated about 1.5-fold increase in production compared to the cellulase activity obtained from the results of design of experiment (6.9 FPU/ml). Biodegradation of DWS was also evaluated to verify the efficiency of the bioconversion process as a waste management method.  相似文献   

3.
In this study, filamentous bacteria (Nocardia amarae) were identified as the major causal microorganism in foaming sludge. The results of growth kinetics study indicated that N. amarae had a relatively strong affinity for non-readily biodegradable fatty acids. N. amarae was able to consume various fatty acids at a constant growth yield from 0.413 to 0.487 g/gCOD. Under common F/M ratio (less than 0.5 g BOD/gMLSS/d) used in activated sludge processes, specific growth rate of N. amarae was found to be more significant than that of non-filamentous bacteria. Based on this feature, a novel technique feast-fast operation (FFO) was developed for the foaming control. The sludge volume index (SVI) rapidly decreased from 300 to 80 mL/g and further stabilized at about 70 mL/g and the system was free from stable foam, while the BOD removal efficiency was maintained above 95%. This control technology effectively suppressed the overgrowth of filaments and improved the settleability of activated sludge without adverse effects on the treatment performance and the process stability.  相似文献   

4.
The treatment performance of an upflow microaerobic sludge blanket reactor (UMSB) for synthetic domestic wastewater was investigated at two dissolved oxygen (DO) levels, 0.3–0.5 and 0.7–0.9 mg l−1, focusing on nitrification performance. The higher DO level induced complete nitrification of ammonia nitrogen (NH3–N), achieving chemical oxygen demand and NH3–N removals of 97 and 92%, respectively. There were consistently significantly higher nitrate nitrogen (NO3–N) and nitrite nitrogen (NO2–N) levels in the effluent, with ~66% of newly-produced oxidised nitrogen as NO2–N. Despite the high nitrification efficiency, only about 23% of the removed NH3–N amount from the influent was ultimately transformed into oxidised nitrogen due to the simultaneous nitrification-denitrification. Sludge blanket development and granulation occurred simultaneously in the UMSB.  相似文献   

5.
6.
Gu T  Syu MJ 《Biotechnology progress》2004,20(5):1460-1466
Immobilized cells are widely used in bioconversions to produce biological products as well as in wastewater treatment such as solvent removal from wastewater streams. In this work, a rate model is proposed to simulate this kind of process in an axial-flow fixed-bed column packed with porous particles containing immobilized cells. The transient model considered various mass transfer mechanisms including axial dispersion, interfacial film mass transfer, and intraparticle diffusion. Cell death in the immobilized cell system was also considered. Effects of various parameters such as kinetic constants and mass transfer parameters were studied. Operational situations such as feed fluctuation flow rate increase and two columns in series were also investigated. The model can be used to study the behavior and characteristics of immobilized cell columns in order to perform scale-up predictions of effluent profiles and for the purpose of process optimization.  相似文献   

7.
8.
Liu JJ  Wang XC  Fan B 《Bioresource technology》2011,102(9):5305-5311
The occurrence of polycyclic aromatic hydrocarbons (PAHs) in a domestic wastewater treatment plant (WWTP) was investigated in a 1 year period. In order to understand how PAHs were removed at different stages of the treatment process, adsorption experiments were conducted using quartz sand, kaolinite, and natural clay as inorganic adsorbents and activated sludge as organic adsorbent for adsorbing naphthalene, phenanthrene, and pyrene. As a result, the adsorption of PAHs by the inorganic adsorbents well followed the Langmuir isotherm while that by the activated sludge well followed the Freundlich isotherm. By bridging equilibrium partitioning coefficient with the parameters of adsorption isotherm, a set of mathematical models were developed. Under an assumption that in the primary settler PAHs removal was by adsorption onto inorganic particles and in the biological treatment unit it was by adsorption onto activated sludge, the model calculation results fairly reflected the practical condition in the WWTP.  相似文献   

9.
The feasibility of treating municipal wastewater by a combined ozone-activated sludge continuous flow system was studied. Lab-scale experiments of both single activated sludge and combined ozone-activated sludge processes were carried out to determine the kinetic coefficients of the biological stage. The results obtained indicated a clear improvement in the kinetic parameters of the aerobic oxidation when a pre-ozonation stage was applied. Particularly, COD removal and nitrification rates were highly increased. The biokinetic parameters were also used to simulate and optimize the continuous reaction system. From the model prediction it was concluded that the integrated process (i.e., ozone-ASP) may significantly increase the waste reduction capacity. The results presented here provide a useful basis for further scaling up and efficient operation of ozone-ASP units in wastewater treatment processes.  相似文献   

10.
During the treatment of raw domestic wastewater in the upflow anaerobic sludge blanket (UASB) reactor, the suspended solids (SS) present in the wastewater tend to influence negatively the methanogenic activity and the chemical oxygen demand (COD) conversion efficiency. These problems led to the emergence of various anaerobic sludge bed systems such as the expanded granular sludge bed (EGSB), the upflow anaerobic sludge blanket (UASB)-septic tank, the hydrolysis upflow sludge bed (HUSB), the two-stage reactor and the anaerobic hybrid (AH) reactor. However, these systems have, like the UASB reactor, limited performance with regard to complete treatment (e.g., removal of pathogens). In this respect, a new integrated approach for the anaerobic treatment of domestic wastewater is suggested. This approach combines a UASB reactor and a conventional completely stirred tank reactor (CSTR) for the treatment of the wastewater low in SS and sedimented primary sludge, respectively. The principal advantages of the proposed system are energy recovery from organic waste in an environmentally friendly way; lowering the negative effect of suspended solids in the UASB reactor; production of a high quality effluent for irrigation; and prevention of odour problems.  相似文献   

11.
The anaerobic bioconversion of raw and mechanically lysed waste-activated sludge was kinetically investigated. The hydrolysis of the biopolymers, such as protein, which leaked out from the biological sludge with ultrasonic lysis, was a first-order reaction in anaerobic digestion and the rate constant was much higher that the decay rate constant of the raw waste activated sludge. An anaerobic digestion model that is capable of evaluating the effect of the mechanical sludge lysis on digestive performance was developed. The present model includes four major biological processes-the release of intracellular matter with sludge lysis; hydrolysis of biopolymers to volatile acids; the degradation of various volatile acids to acetate; and the conversion of acetate and hydrogen to methane. Each process was assumed to follow first order kinetics. The model suggested that when the lysed waste-activated sludge was fed, the overall digestive performance remarkably increased in the two-phase system consisting of an acid forming process and a methanogenic process, which ensured the symbiotic growth of acetogenic and methanogenic bacteria. (c) 1993 Wiley & Sons, Inc.  相似文献   

12.
Microwave (2450 MHz, 1250 W), ultrasonic (20 kHz, 400 W) and chemo-mechanical (MicroSludge® with 900 mg/L NaOH followed by 83,000 kPa) pretreatments were applied to pulp mill waste sludge to enhance methane production and reduce digester sludge retention time. The effects of four variables (microwave temperature in a range of 50-175 °C) and sonication time (15-90 min), sludge type (primary or secondary) and digester temperature (mesophilic and thermophilic) were investigated. Microwave pretreatment proved to be the most effective, increasing specific methane yields of WAS samples by 90% compared to controls after 21 days of mesophilic digestion. Sonication solubilized the sludge samples better, but resulted in soluble non-biodegradable compounds. Based on the laboratory scale data, MicroSludge® was found the least energy intensive pretreatment followed by sonication for 15 min alternative with net energy profits of 1366 and 386 kWh/tonne of total solids (TS), respectively. Pretreatment benefits were smaller for thermophilic digesters.  相似文献   

13.
The main aim of this work was to intensify conventional composting of a mixture of sewage sludge and solid food wastes by a one-stage thermophilic bioconversion of these wastes into an organic fertilizer. An intensive process was carried out in a closed system, with or without addition of a starter culture of Bacillus thermoamylovorans. The most effective thermophilic bioconversion of the mixture of food waste and sewage sludge, with addition of starter culture, was when the pH was buffered with calcium carbonate, or the pH drop in the material was prevented by preliminary removal of sulphides from sewage sludge by hydrogen peroxide.  相似文献   

14.
Response surface methodology was used to optimize spray drying process for producing biopesticide powders of Bacillus thuringiensis by using fermented broth of starch industry wastewater and wastewater sludge. Analysis of variance was carried out using number of viable spores in the powder as dependent variable. The determination coefficients of models were 92 and 94% for fermented broth of starch industry wastewater and wastewater sludge, respectively. Under the optimal conditions of the operational parameters of spray drying, the numbers of viable spores were 2.2 × 108 and 1.3 × 108 CFU/mg in the dry powders for starch industry wastewater and wastewater sludge respectively, with a loss of viable spores of 18 and 13% when compared with their respective fermented broths. The entomotoxicity (measured by the bioassay method) of the powders obtained under optimal conditions showed a loss of 28 and 18% when compared with the fermented broth of starch industry wastewater and wastewater sludge, respectively. The optimized results of spray drying were used for field application calculations. The volume of fermented broth required to produce powder formulated product when compared with the volume required for liquid formulation product in order to treat 1 ha of balsam fir was less and offered several advantages.  相似文献   

15.
The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22–35 °C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT’s) of 13.3, 10 and 5.0 h. An overall reduction of 80–86% for CODtotal; 51–73% for CODcolloidal and 20–55% for CODsoluble was found at a total HRT of 5–10 h, respectively. By prolonging the HRT to 13.3 h, the removal efficiencies of CODtotal, CODcolloidal and CODsoluble increased up to 92, 89 and 80%, respectively. However, the removal efficiency of CODsuspended in the combined system remained unaffected when increasing the total HRT from 5 to 10 h and from 10 to 13.3 h. This indicates that, the removal of CODsuspended was independent on the imposed HRT. Ammonia-nitrogen removal in MBBR treating UASB reactor effluent was significantly influenced by organic loading rate (OLR). 62% of ammonia was eliminated at OLR of 4.6 g COD m−2 day−1. The removal efficiency was decreased by a value of 34 and 43% at a higher OLR’s of 7.4 and 17.8 g COD m−2 day−1, respectively. The mean overall residual counts of faecal coliform in the final effluent were 8.9 × 104 MPN per 100 ml at a HRT of 13.3 h, 4.9 × 105 MPN per 100 ml at a HRT of 10 h and 9.4 × 105 MPN per 100 ml at a HRT of 5.0 h, corresponding to overall log10 reduction of 2.3, 1.4 and 0.7, respectively. The discharged sludge from UASB–MBBR exerts an excellent settling property. Moreover, the mean value of the net sludge yield was only 6% in UASB reactor and 7% in the MBBR of the total influent COD at a total HRT of 13.3 h. Accordingly, the use of the combined UASB–MBBR system for sewage treatment is recommended at a total HRT of 13.3 h.  相似文献   

16.
Supplying clean water to fulfill human requirements is one of this century’s priorities. Global water resources are barely aligned with the rising demand, which is further aggravated by rising population, climate change and water quality problems. Consequently, there is a persistent need for innovative technologies to valorize unconventional water resources such as domestic wastewater. Graphene holds promising prospects in developing domestic wastewater treatment to qualitatively enhance treatment efficiency and quantitatively increase water supply. This review highlights the existing wastewater treatment processes along with their challenges according to South Australian wastewater treatment plants (WWTPs) which are representative of many modern WWTPs. The discussion will also cover the current and potential applications of graphene for domestic wastewater treatment, as well as obstacles and research priorities required for commercialization.  相似文献   

17.
The performance of an activated sludge wastewater treatment process consisting of an aeration tank and a secondary settler has been studied. A tanks-in-series model with backflow was used for mathematical modeling of the activated sludge wastewater treatment process. Non-linear algebraic equations obtained from the material balances of MLSS (mixed liquor suspended solids or activated sludge), BOD (biological oxygen demand) and DO (dissolved oxygen) for the aeration tank and the settler and from the behavior of the settler were solved simultaneously using the modified Newton-Raphson technique. The concentration profiles of MLSS, BOD and DO in the aeration tank were obtained. The simulation results were examined from the viewpoints of mixing in the aeration tank and flow in the secondary settling tank. The relationships between the overall performance of the activated sludge process and the operating and design parameters such as hydraulic residence time, influent BOD, recycle ratio and waste sludge ratio were obtained.  相似文献   

18.
The activated sludge membrane bioreactor (MBR) has been shown to have some advantages for the processing and reclamation of domestic wastewater. We hypothesized that certain microorganisms, chosen for their abilities to decompose the chemical components of raw sewage, would, when coupled with the MBR, significantly improve the stability and efficiency of this system. We selected environmental bacterial strains which oxidize ammonia and nitrites and produce protease, amylase, and cellulase for the development and testing of a novel biologically enhanced MBR (eMBR). We compared the eMBR with the activated sludge MBR. With the eMBR, the average values of effluent quality were: chemical oxygen demand (COD), 40 mg/l(average efficiency of removal 90.0%); and NH4 +–N, 0.66 mg/l(average efficiency of removal 99.4%). Effluent qualities met the standard and were stable during the entire 90 days of this study. For the activated sludge MBR, the COD removal rate was 91.7%, and the NH4 +–N removal (94.8%) was less than that of the eMBR. Start-up time for the eMBR was only 24–48 h, much shorter than the 7–8 days required to initiate function of the standard MBR. The biomass concentrations of total heterotrophic bacteria and autotrophic bacteria in the eMBR did not fluctuate significantly during the course of the study. Various kinds of microorganisms will establish an ecological balance in the reactor. Compared with the activated sludge MBR, the eMBR not only produced an excellent and stable quality of effluent but also resulted in a shorter time to start-up and significantly improved the efficiency of NH4 +–N removal.  相似文献   

19.
This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes.  相似文献   

20.
王萍  余志晟 《微生物学通报》2019,46(8):1971-1981
活性污泥法由于操作简单、处理效果好被广泛应用于市政污水和工业废水的处理。污泥膨胀和污泥发泡现象影响二次沉淀池的泥水分离过程和生物反应池的微生物量稳定,严重困扰着污水处理厂的正常运行,被称为污水处理厂的"癌症"。本文从污泥膨胀和污泥发泡的定义及分类出发,全面地比较了表征污泥膨胀和污泥发泡的方法、引起污泥膨胀和污泥发泡的丝状细菌种类及控制污泥膨胀和污泥发泡方法的异同,并探讨了污泥膨胀和污泥发泡问题的未来研究方向和控制策略,期望能够为今后污泥膨胀和污泥发泡问题的研究和调控提供有价值的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号