首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experimental backgrounds of ectopic discharges were made by i.p. administrating of 4-aninopyriding (4-AP), a K+ channel blocker, or anisodamine, a muscarinic receptor blocker, in CCI rats, and the sympathetic sprouting in the dorsal root ganglia (DRG) as well as the heat-hyperalgesia was observed. It was demonstrated that the increased ectopic discharges induced by 4-AP promote sympathetic sprouting in the DRG and a greater number of sympathetic basket cells were developed, causing exacerbation of heat-hyperalgesia in CCI rats. On the contrary, the sympathetic sprouting in the DRG and heat-hyperalgesia are evidently diminished after anisodamine injection. Our results suggest that ectopic discharges may be an immediate factor in triggering sympathetic sprouting in DRG following peripheral nerve injury.  相似文献   

2.
3.
Zhang JM  Strong JA 《生理学报》2008,60(5):617-627
Traumatic injury or inflammatory irritation of the peripheral nervous system often leads to persistent pathophysiological pain states. It has been well-documented that, after peripheral nerve injury or inflammation, functional and anatomical alterations sweep over the entire peripheral nervous system including the peripheral nerve endings, the injured or inflamed afferent fibers, the dorsal root ganglion (DRG), and the central afferent terminals in the spinal cord. Among all the changes, ectopic discharge or spontaneous activity of primary sensory neurons is of great clinical interest, as such discharges doubtless contribute to the develop-ment of pathological pain states such as neuropathic pain. Two key sources of abnormal spontaneous activity have been identified following peripheral nerve injury: the injured afferent fibers (neuroma) leading to the DRG, and the DRG somata. The purpose of this review is to provide a global account of the abnormal spontaneous activity in various animal models of pain. Particular attention is focused on the consequence of peripheral nerve injury and localized inflammation. Further, mechanisms involved in the generation of spontaneous activity are also reviewed; evidence of spontaneous activity in contributing to abnormal sympathetic sprouting in the axotomized DRG and to the initiation of neuropathic pain based on new findings from our research group are discussed. An improved understanding of the causes of spontaneous activity and the origins of neuropathic pain should facilitate the development of novel strategies for effective treatment of pathological pain.  相似文献   

4.
Tyrosine hydroxylase immunocytochemistry was used to reveal the sympathetic postganglionic axons that sprout to form basket-like skeins around the somata of some primary sensory neurons in dorsal root ganglia (DRGs) following sciatic nerve injury. Ultrastructural observations in rats revealed that these sprouts grow on the surface of glial lamellae that form on the neurons. Sciatic nerve injury triggers glial cell proliferation in the DRG, and the formation of multilamellar pericellular onion bulb sheaths, primarily around large diameter DRG neurons. We infer that these glia participate in the sprouting process by releasing neurotrophins and expressing growth supportive cell surface molecules. Many DRG cell somata, and their axons in intact nerves and nerve end neuromas, express α2A adrenoreceptors intracytoplasmically and on their membrane surface. However, sympathetic axons never make direct contacts with the soma membrane. The functional coupling known to occur between sympathetic efferents and DRG neurons must therefore be mediated by the diffusion of neurotransmitter molecules in the extracellular space. Sympathetic basket-skeins were observed in DRGs removed from human neuropathic pain patients, but the possibility of a functional relation between these structures and sensory symptoms remains speculative.  相似文献   

5.
刺激大鼠离断背根外周端对相邻背根电活动的影响   总被引:1,自引:0,他引:1  
Zhang Y  Deng YP  Guan XM 《生理学报》1999,51(4):371-376
在切断大鼠左侧12、13背根后,观察电刺激(刺激参数为0.8-1.2mA,100Hz,0.5ms,总时程2s)L2背根外同对L3背根放电活动的影响。结果表明:连续多次刺激L2背根可使L3背根平均放电频率(MDF)逐步增加,增加量与刺激次数中于明显直线正相关,各次刺激后的时程分析表明,这种增频作用具有明显的累积效应的后效应,并与刺激前13背根的活动状态密切相关,刺激前放电活动较强者其增频作用更明显。  相似文献   

6.
Pain and pain modulation has been viewed as being mediated entirely by neurons. However, new research implicates spinal cord glia as key players in the creation and maintenance of pathological pain. Sciatic nerve lesions are one of the most commonly studied pain-related injuries. In our study we aimed to characterize changes in microglial activation in the rat spinal cord after axotomy and chronic constriction injury of the sciatic nerve and to evaluate this activation in regard to pain behavior in injured and control groups of rats. Microglial activation was observed at ipsilateral side of lumbar spinal cord in all experimental groups. There were slight differences in the level and extent of microglial activation between nerve injury models used, however, differences were clear between nerve-injured and sham animals in accordance with different level of pain behavior in these groups. It is known that activated microglia release various chemical mediators that can excite pain-responsive neurons. Robust microglial activation observed in present study could therefore contribute to pathological pain states observed following nerve injury.  相似文献   

7.
8.
Summary The effects of chronic lesions of rat lumbar spinal or sciatic nerves on the binding of Glycine max (soybean) agglutinin to galacto-conjugates, in small-and medium-size primary sensory neurons of the L4 and L5 dorsal root ganglia, were examined over a 580-day period. Spinal nerve section resulted in a marked decrease in the population of stained neurons within 7 days. However, despite some retrograde morphological changes triggered by axonal injury, the proportion of stained nerve cells was normalized 180 days postoperatively. This temporary decrease in perikaryal lectin reactivity was initially associated with a marked accumulation of stained material in the nerve, proximal and distal to the site of section, with similar accumulations also being noticeable at each level of injury in sciatic nerves subjected to double ligature. This may reflect the presence of glycocompounds linked to the autolysis of nerve fibers during the phase of retrograde dying-back and Wallerian degeneration. At later stages, stained deposits could be seen scattered along central and peripheral axonal processes of the dorsal root ganglion neurons in the vicinity of the cell body. They may indicate a disturbance in the peripheral turnover of glycoproteins in chronically-transected nerves, with piling up of neuronal products. Sciatic nerve injury caused similar but less severe effects which, except for the L4 ganglion cells, were rapidly reversible.  相似文献   

9.
10.
Following peripheral nerve transection, a series of biochemical changes occurs in axons and Schwann cells both at the site of lesion and distal to it. Macrophages differentiated from monocytes that invade the area in response to transection (elicited macrophages) and, perhaps, also macrophages normally present in the tissue (resident macrophages) play important roles in these changes. In addition, nerve transection produces changes in the cell bodies of axotomized neurons and their surrounding glial cells, located at some distance from the lesion. To determine whether macrophages might play a role in the changes occurring in the superior cervical ganglion (SCG) after axotomy, we examined the presence of macrophages before and after axonal damage. The monoclonal antibodies ED1, ED2, and OX6 were used, each of which recognizes a somewhat different population of macrophages. Ganglia from normal rats contained a population of resident cells that were ED2+ but very few that were ED1+. Within 2 days after the postganglionic nerves were transected, the number of ED1+ cells increased substantially, with little change in immunostaining for ED2. These data, in combination with published studies on other tissues, suggest that ED1 in the SCG is selective for elicited macrophages and ED2 for resident macrophages. OX6 immunostaining was prominent in normal ganglia but also increased significantly after axotomy, suggesting that it reflects both macrophage populations. Systemic administration of 6-hydroxydopamine, a neurotoxin that causes the destruction of sympathetic nerve endings, also produced an increase in ED1 immunostaining. Thus, the change in ED1 immunostaining in the SCG does not require surgery, with the attendant servering of local blood vessels and connective tissue, but rather only the disconnection of sympathetic neurons from their end organs. The time course of the invasion of monocytes after axotomy indicates that this process is not required to trigger the biochemical changes occurring in the ganglion within the first 24 h. On the other hand, the existence of a resident population of macrophages raises the possibility that changes in those cells might be involved. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
Peripheral nerve injury may lead to neuroadaptive changes of cellular signals in spinal cord that are thought to contribute to central mechanisms underlying neuropathic pain. Here we used a 2‐DE‐based proteomic technique to determine the global expression changes of synaptosome‐associated proteins in spinal cord dorsal horn after unilateral fifth spinal nerve injury (SNI). The fifth lumbar dorsal horns ipsilateral to SNI or sham surgery were harvested on day 14 post‐surgery, and the total soluble and synaptosomal fractions were isolated. The proteins derived from the synaptosomal fraction were resolved by 2‐DE. We identified 27 proteins that displayed different expression levels after SNI, including proteins involved in transmission and modulation of noxious information, cellular metabolism, membrane receptor trafficking, oxidative stress, apoptosis, and degeneration. Six of the 27 proteins were chosen randomly and further validated in the synaptosomal fraction by Western blot analysis. Unexpectedly, Western blot analysis showed that only one protein in the total soluble fraction exhibited a significant expression change after SNI. The data indicate that peripheral nerve injury changes not only protein expression but also protein subcellular distribution in dorsal horn cells. These changes might participate in the central mechanism that underlies the maintenance of neuropathic pain.  相似文献   

12.
Ribonuclease activity at pH 7.1 (alkaline ribonuclease) was determined in homogenates of rat superior cervical ganglion up to 5 days after postganglionic nerve injury under optimal conditions of assay. Measurements were performed in the presence and absence of the sulfhydryl blocking agent, N-ethylmaleimide, to assess the proportion of alkaline ribonuclease apparently bound to endogenous inhibitor. Total ribonuclease activity per ganglion was stimulated 1.3 fold by 1 day after injury and remained elevated over the 5 day period. Free ribonuclease activity accounted for about 60% of the observed increase in total activity at day 1, but had returned to control level by day 3. At day 3 the entire 90% increase in total activity was attributable to ribonuclease bound to endogenous inhibitor (i.e. latent activity). These changes are occurring at times after nerve injury when marked alterations in RNA turnover have been observed, implicating alkaline ribonucleases in the control of RNA metabolism during nerve regeneration.  相似文献   

13.
Summary The sternocostalis muscle of the rat was examined at one to five days after partial denervation and levels of terminal sprouting were assessed.The removal of one intercostal nerve caused localised degeneration which did not extend more than a few muscle fibres deep into the field of distribution of the adjacent nerve. Terminal sprouting was clearly seen at 24 h after operation and did not appear to develop further up to five days.There was no difference in the sprouting responses to section of either intercostal nerve 2, 4 or 5. There was, however, a decrease in the response with increasing distance from the cut nerve. No sprouting response was observed in the contralateral muscle.Comparison of sprouting levels of B and C type end plates revealed a greater percentage of C type end plates with sprouts. However, the response of B type end plates, considered in relation to the levels of spontaneous sprouting, was greater than that of C type end plates.  相似文献   

14.
Primary afferent fibers are originated from pseudounipolar sensory cells in dorsal root ganglia (DRG) and transmit external stimuli received in the skin to the spinal cord. Here we undertook a proteomic approach to uncover the polarity of primary afferent fibers. Lumbar spinal nerve segments, peripheral and central to DRG, were dissected from 5-wk-old Wistar rats and the lysates were subjected to large-sized 2-DE at pH 5-6. Among approximately 800 protein spots detected in the central and peripheral fractions, one of the unique spots in the peripheral fraction with MW of 60 kDa and pI of 5.6 was identified as an isoform of collapsin response mediator protein-2 (CRMP-2) by MALDI-TOF MS and Western blots with anti-CRMP-2 antibodies that recognize 1-17 and 486-528 residues. Since this novel spot was detected only in the peripheral fraction, but not in the central fraction, DRG, and other regions of the brain, it was named periCRMP-2. The C-terminal fragment of CRMP-2 was not detected in periCRMP-2 by MS analyses. Expression of periCRMP-2 decreased following sciatic nerve injury. These results suggest that periCRMP-2 is a C-terminal truncated isoform polarized in the peripheral side of spinal nerves and may be involved in nerve degeneration and regeneration.  相似文献   

15.
16.
The epsilon-isozyme of protein kinase C (PKCepsilon) and the vanilloid receptor 1 (VR1) are both expressed in dorsal root ganglion (DRG) neurons and are reported to be predominantly and specifically involved in nociceptive function. Using phosphospecific antibody against the C-terminal hydrophobic site Ser729 of PKCepsilon as a marker of enzyme activation, the state-dependent activation of PKCepsilon, as well as the expression of VR1 in rat DRG neurons, was evaluated in different experimental pain models in vivo. Quantitative analysis showed that phosphorylation of PKCepsilon in DRG neurons was significantly up-regulated after carrageen- and Complete Freund's Adjuvant-induced inflammation, while it was markedly down-regulated after chronic constriction injury. A double-labeling study showed that phosphorylation of PKCepsilon was expressed predominantly in VR1 immunoreactivity positive small diameter DRG neurons mediating the nociceptive information from peripheral tissue to spinal cord. The VR1 protein expression showed no significant changes after either inflammation or chronic constriction injury. These data indicate that functional activation of PKCepsilon has a close relationship with the production of inflammatory hyperalgesia and the sensitization of the nociceptors. Inflammatory mediator-induced activation of PKCepsilon and subsequent sensitization of VR1 to noxious stimuli by PKCepsilon may be involved in nociceptor sensitization.  相似文献   

17.
Calcitonin gene-related peptide (CGRP) is a vasodilatory peptide, and it is primarily synthesized in dorsal root ganglia (DRG). Plasma CGRP levels increase during pregnancy and with steroid hormones, and nerve growth factor (NGF) stimulates calcitonin/CGRP promoter and CGRP synthesis in DRG. We previously showed that CGRP levels in DRG were stimulated with steroid hormone treatments in vivo but not in vitro. Thus, the stimulation of CGRP by these hormones may be indirect through the upregulation of NGF effects. We hypothesized that the female sex steroid hormones upregulate NGF receptors, trkA and p75(NTR), in DRG. We examined the effects of 17 beta-estradiol (E(2)) and progesterone (P(4)) on NGF receptors in DRG obtained from ovariectomized (ovx) rats. Groups of 4 ovx rats were injected s.c. with 5 microg E(2), 4 mg P(4), or 5 microg E(2) + 4 mg P(4) in 0.2 ml sesame oil or injected with oil only and were killed at 6, 24, and 48 h. In addition, ovx rats were also injected s.c. with varying doses (0.2, 1.0, 5.0, 25 microg) of E(2) (0.5, 1.5, 4, 10 mg) P(4), and (5 microg) E(2) + (0.5, 1.5, 4.0, 10 mg) P(4) in 0.2 ml sesame oil, or vehicle, and killed at 6 (for E(2)) or 24 (for P(4) and E(2) + P(4)) h. Furthermore, groups of ovx rats were also killed at 12 and 24 h; 3 and 7 days; 2, 4, and 6 wk after ovariectomy. The DRGs were collected from all groups and then processed for Western immunoblotting to examine both trkA and p75(NTR) levels. Estradiol increased trkA at 6 h but not p75(NTR). Progesterone caused upregulation of trkA and p75(NTR) at 6 and 24 h. 17 beta-Estradiol + P(4) increased trkA at 6 and 24 h and p75(NTR) at all time points examined. One microgram of E(2) increased trkA but did not affect p75(NTR) levels. Progesterone at 4 and 10 mg upregulated trkA but only 10 mg P(4) increased p75(NTR). Five micrograms of E(2) coinjected with P(4) at 1.5 and 4 mg increased trkA, while p75(NTR) receptor was upregulated when coinjected with P(4) at 1.5 to 10 mg. The ovariectomy caused a decrease in trkA receptors compared to proestrus rats, and these decreases were significant by 6 wk, but surprisingly p75(NTR) increased at 2 wk after ovariectomy. 17 beta-Estradiol increased trkA but not p75(NTR) receptors in DRG, whereas P(4) caused increases in both trkA and p75(NTR) in DRG. In addition, the combination of these steroid hormones had more effect on both receptors than either hormone alone. Thus, we concluded that high levels of female steroid hormones such as those due to pregnancy or hormonal replacement therapy could increase NGF receptor expression in DRG that carry more NGF to elevate the CGRP synthesis in these groups. We suggested that the regulation of NGF receptors by ovarian steroids may underlie steroidal regulation of other factors such as CGRP.  相似文献   

18.
Tanida M  Iwashita S  Terui N  Ootsuka Y  Shu M  Kang D  Suzuki M 《Life sciences》2006,78(11):1149-1154
A previous study of ours demonstrated that a high-fat diet (FAT) causes body fat accumulation, as well as elevation of plasma leptin level, renal sympathetic nerve activity (RSNA), and blood pressure (BP). In the study reported here, we analyzed the role of leptin in these elevations of the RSNA and BP due to FAT feeding by assessing sympathetic and cardiovascular responses to intravenous (IV) administration of leptin in rats fed either a FAT or a high-carbohydrate diet (CHO). The results showed that baseline body fat, plasma leptin level, RSNA and BP were significantly higher in the FAT group than in the CHO group, and that IV administration of leptin elevated RSNA and plasma leptin levels but lowered BP in the CHO group. However, these effects of leptin were eliminated in the FAT group. These findings suggest that FAT-fed rats which expose basal elevation of plasma leptin levels, RSNA and BP might be hyposensitive to endogenous leptin. Therefore, leptin resistance appeared obviously in FAT-induced hypertension might indicate that leptin is implicated in generating the elevation of RSNA and BP induced by long-term FAT feeding.  相似文献   

19.
Alternative splicing (AS) regulates a variety of biological activities in numerous tissues and organs, including the nervous system. However, the existence and specific roles of AS events during peripheral nerve repair and regeneration remain largely undetermined. In the current study, by mapping splice-crossing sequence reads, we identified AS events and relevant spliced genes in rat sciatic nerve stumps following sciatic nerve crush. AS-related genes at 1, 4, 7, and 14 days post nerve crush were compared with those at 0 day to discover alternatively spliced genes induced by sciatic nerve crush. These injury-induced alternatively spliced genes were then categorized to diseases and biological functions, genetic networks, and canonical signaling pathways. Bioinformatic analysis indicated that these alternatively spliced genes were mainly correlated to immune response, cellular growth, and cellular function maintenance. Our study elucidated AS events following peripheral nerve injury and might help deepen our understanding of the molecular mechanisms underlying peripheral nerve regeneration.  相似文献   

20.
The bodies of primary sensory neurons and their satellite glial cells (SGCs) are limited by the basal laminae from extracellular matrix of the dorsal root ganglia (DRG). The basal laminae displayed uniform immunofluorescence staining for laminin-1 in the sections of rat intact (naive) DRG. A proximal or distal ligature of the spinal nerves resulted in a heterogeneous immunostaining for laminin-1 around neuron-SGC units in the sections of the corresponding DRG. The pattern of irregular laminin-1 immunofluorescence was more extensive in the ipsilateral than the contralateral DRG of the operated rats. The immunofluorescence for laminin-1 exactly coincided with binding of Concanavalin-A as well as immunostaining for type IV collagen in both naive DRG and DRG affected by nerve ligature. Nidogen immunostaining decreased or fully disappeared at the surface of the SGCs consistently with immunofluorescence staining for laminin-1, but retained or increased in the endothelial cells and ED-1 positive cells invaded the DRG affected by nerve ligature. The results indicate an alteration of the content of basal laminae surrounding the bodies of primary sensory neurons and their SGSs following nerve constriction injury. A modulation of the basal laminae may be related with other cellular and molecular alterations related with peripheral neuropathic pain, for example, expansion of sympathetic sprouts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号