首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general method of assigning the non-exchangeable protons in the nuclear magnetic resonance spectra of small DNA molecules has been developed based upon two-dimensional autocorrelated (COSY) and nuclear Overhauser (NOESY) spectra in 2H2O solutions. Groups of protons in specific sugars or bases are identified by their scalar couplings (COSY), then connected spatially in a sequential fashion using the Overhauser effect (NOESY). The method appears to be generally applicable to moderate-sized DNA duplexes with structures close to B DNA. The self-complementary DNA sequence d(C-G-C-G-A-A-T-T-C-G-C-G) has been synthesized by the solid-phase phosphite triester technique and studied by this method. Analysis of the COSY spectrum and the NOESY spectrum leads to the unambiguous assignment of all protons in the molecule except the poorly resolved H5' and H5" resonances. The observed NOEs indicate qualitatively that, in solution, the d(C-G-C-G-A-A-T-T-C-G-C-G) helix is right-handed and close to the B DNA form with a structure similar to that determined by crystallography.  相似文献   

2.
The assignment of the 1H nuclear magnetic resonance spectrum of glucagon bound to perdeuterated dodecylphosphocholine micelles with the use of two-dimensional 1H nuclear magnetic resonance techniques at 360 MHz is described. Sequential resonance assignments were obtained for all backbone and Cβ protons except the N-terminal amino group and the amide proton of Ser2. The assignments of the non-labile amino acid side-chain protons are complete except for the γ-methylene protons of Gln20 and Gln24. These assignments provide a basis for the determination of the three-dimensional structure of lipid-bound glucagon.  相似文献   

3.
This paper describes a new nuclear magnetic resonance approach for the determination of secondary structure in globular proteins. To illustrate the practical application of the new procedure, two-dimensional correlated spectroscopy and two-dimensional nuclear Overhauser enhancement spectroscopy were used to obtain individual assignments for all the backbone protons of the beta-sheet secondary structures in the basic pancreatic trypsin inhibitor. First, combined connectivity diagrams of these two methods recorded in both 2H2O solution and H2O solution of the inhibitor were employed to obtain sequential, individual resonance assignments for the separate strands in the beta sheet. Second, a 2D nuclear Overhauser enhancement spectrum recorded with a long mixing time was used to determine how the separate, extended polypeptide strands are linked by hydrogen bonds in the sheet structures. By combination of these results with the identifications of the amino acid side-chain resonances described in the preceding paper, the beta-sheet structures can, without reference to data on the spatial structure obtained with other techniques, be localized in the amino acid sequence. This investigation confirms results on limited regions of the beta sheet in the inhibitor obtained previously with one-dimensional nuclear magnetic resonance experiments and demonstrates that the entire beta-sheet structure seen in single crystals of the inhibitor is preserved in aqueous solution.  相似文献   

4.
Peptide NH resonances in the 250 MHZ 1H nuclear magnetic resonance (NMR) spectrum of oxytocin in H2O were assigned to specific amino acid residues by the "underwater decoupling" technique (i.e., decoupling from corresponding CalphaH resonances, which are buried beneath the intense water peak). These experiments confirm previous assignments of A. I. Brewster an V. J. Hruby ((1973), Proc. Natl. Acad. Sci. U.S.A. 70, 3806) and A. F. Bradbury et al. ((1974), FEBS Lett. 42, 179). Three methods of assigning NH resonances of peptides--solvent titration, underwater decoupling, and isotopic labeling--are compared. As the solvet composition is gradually changed from dimethyl sulfoxide to H2O, oxytocin undergoes a conformational change at 70-90 mol % of H2O. Exposure to solvent of specific hydrogens of oxytocin in H2O was studied by monitoring intensity changes of solute resonances when the solvent peak was saturated. Positive nuclear Overhauser effects (NOE's) of 14 +/- 5 were observed for the Tyr ortho CH and meta CH resonances, respectively. Comparative studies with deamino-oxytocin indicate that these effects result predominantly from intermolecular dipoledipole interaction between aromatic side chain CH protons and protons of the solvent. The NOE's therefore indicate intimate contact between water and the aromatic CH hydrogens of the Tyr side chain. The extent of saturation transferred by proton exchange between water and NH group varies with Ph in a manner which appears to reflect the acid-base catalysis of the protolysis reaction. There is no indication that any NH protons are substantially shiedled from the solvent.  相似文献   

5.
The identification of the spin systems that comprise the 1H nuclear magnetic resonance spectrum of French bean Cu(I) plastocyanin (Mr 10,600) has been made using an approach that integrates a wide range of two-dimensional nuclear magnetic resonance experiments. A very large percentage of these assignments has been obtained in spectra acquired from 1H2O solution using a backbone amide-based strategy. The spin systems of 91 of the 99 residues have been assigned to the appropriate amino acid, thereby providing an ample basis for obtaining sequence-specific assignments, as described in the accompanying paper.  相似文献   

6.
The proton resonances of the heme, the axial ligands, and other hyperfine-shifted resonances in the 1H nuclear magnetic resonance spectrum of horse ferricytochrome c have been investigated by means of one- and two-dimensional nuclear Overhauser and magnetization transfer methods. Conditions for saturation transfer experiments in mixtures of ferro- and ferricytochrome c were optimized for the cross assignment of corresponding resonances in the two oxidation states. New resonance assignments were obtained for the methine protons of both thioether bridges, the beta and gamma meso protons, the propionate six heme substituent, the N pi H of His-18, and the Tyr-67 OH. In addition, several recently reported assignments were confirmed. All of the resolved hyperfine-shifted resonances in the spectrum of ferricytochrome c are now identified. The Fermi contact shifts experienced by the heme and ligand protons are discussed.  相似文献   

7.
The dodecadeoxynucleotide duplex d-(GCATTAATGC)2 has been prepared with all adenine bases replaced by 2-NH2-adenine. This modified duplex has been characterized by nuclear magnetic resonance (NMR) spectroscopy. Complete sequence-specific 1H resonance assignments have been obtained by using a variety of 2D NMR methods. Multiple quantum-filtered and multiple quantum experiments have been used to completely assign all sugar ring protons, including 5'H and 5'H resonances. The assignments form the basis for a detailed comparative analysis of the 1H NMR parameters of the modified and parent duplex. The structural features of both decamer duplexes in solution are characteristic of the B-DNA family. The spin-spin coupling constants in the sugar rings and the relative spatial proximities of protons in the bases and sugars (as determined from the comparison of corresponding nuclear Overhauser effects) are virtually identical in the parent and modified duplexes. Thus, substitution by this adenine analogue in oligonucleotides appears not to disturb the global or local conformation of the DNA duplex.  相似文献   

8.
The complete assignments of all the proton magnetic resonance signals from each NH-CalphaH-CbetaH2 moiety in a complex peptide containing several residues of the same type has not yet been achieved without specific or stereospecific isotopic enrichment. We report the sequencing and proton magnetic resonance spectral assignments, including those of 4 aromatic residues, of tyrocidine A, an analog of the decapeptide gramicidin S. Two complementary methods, proton-proton nuclear Overhauser enhancements and scalar decoupling, evaluated by two distinct forms of difference double resonance, were used. All chemical shifts, scalar coupling constants, and [1H:1H] nuclear Overhauser enhancements for the backbone protons are reported. The [1H:1H] nuclear Overhauser enhancements are consistent with tyrocidine A possessing a beta-I turn/beta-II' turn/antiparallel beta-pleated sheet conformation. In addition to the previously proposed nuclear Overhauser enhancement criteria for beta turns and antiparallel beta sheets, another criterion for identifying the antiparallel beta sheet is demonstrated; namely, the nuclear Overhauser enhancement between 2 CalphaH protons of the central resisdues, in this case the Phe7CalphaH and Orn2CalphaH.  相似文献   

9.
The assignment of the 1H nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor with the use of two-dimensional 1H nuclear magnetic resonance techniques at 500 MHz is described. The assignments are based entirely on the known amino acid sequence and the nuclear magnetic resonance data. Individual resonance assignments were obtained for all backbone and Cβ protons, with the exception of those of Arg1, Pro2, Pro13 and the amide proton of Gly37. The side-chain resonance assignments are complete, with the exception of Pro2 and Pro13, the Nδ protons of Asn44 and the peripheral protons of the lysine residues and all but two of the arginine residues.  相似文献   

10.
High-resolution proton nuclear magnetic resonance spectroscopy and nuclear Overhauser effects for the low-field exchangeable proton resonances of human normal adult hemoglobin in aqueous solvents are being used to confirm and extend the assignments of these resonances to specific protons at the intersubunit interfaces of the molecule. Most of these exchangeable proton resonances of human normal adult hemoglobin have been found to be absent in the spectra of isolated alpha or beta subunits. This finding indicates that they are specific spectral markers for the quaternary structure of the hemoglobin tetramer. Based on the nuclear Overhauser effect results, we have assigned the exchangeable proton resonance at +7.4 ppm downfield from H2O to the hydrogen-bonded proton between alpha 103(G10)His and beta 108(G10)Asn at the alpha 1 beta 1 interface. The nuclear Overhauser effect results have also confirmed the assignments of the exchangeable proton resonances at +9.4 and +8.2 ppm downfield from H2O previously proposed by workers in this laboratory based on a comparison of human normal adult hemoglobin and appropriate mutant hemoglobins. This independent confirmation of previously proposed assignments is necessary in view of the possible long-range conformational effects of single amino-acid substitutions in mutant hemoglobin molecules.  相似文献   

11.
Two-dimensional NMR experiments--one bond 1H-13C correlation spectroscopy and heteronuclear multiple bond correlation spectroscopy, both performed in the reverse detection mode--have been employed to unambiguously assign all of the 13C resonances of the antibiotic bleomycin and its zinc(II) complex. Previous 1H resonance assignments of bleomycin (Chen et al. (1977) Biochemistry 16, 2731-2738) were confirmed on the basis of homonuclear Hartmann-Hahn and homonuclear COSY experiments. The 13C assignments differ substantially from those previously obtained by other investigators (Naganawa et al., (1977) J. Antibiot. 30, 388-396; Dabrowiak et al., (1978) Biochemistry 17, 4090-4096) but are in agreement with those reported by Akkerman et al. (1988) (Magn. Reson. Chem. 26, 793-802). The more recent study employed similar two-dimensional correlation experiments (performed in the direct detection mode) in conjunction with attached proton tests. Their study often required model compound data to identify carbonyls adjacent to aliphatic moieties. Previous 13C NMR studies of the structure, pH titration, and molecular dynamics of bleomycin and its zinc complex have been reinterpreted in terms of the revised assignments.  相似文献   

12.
The 1H nuclear magnetic resonance (n.m.r.) spectrum of the alpha-amylase inhibitor Tendamistat was completely assigned with the use of phase-sensitive homonuclear two-dimensional n.m.r. The assignments include the non-labile protons of the 74 amino acid residues as well as the labile protons which exchange sufficiently slowly to be observed in H2O solution. The proton chemical shifts are listed at 50 degrees C and pH 3.2, which coincides with the conditions used for the determination of the three-dimensional structure of Tendamistat.  相似文献   

13.
N J Skelton  S Forsén  W J Chazin 《Biochemistry》1990,29(24):5752-5761
The solution structure and dynamics of apo bovine calbindin D9k have been studied by a wide range of two-dimensional 1H nuclear magnetic resonance experiments. Due to the presence of conformational heterogeneity in the wild-type protein, the sequential resonance assignment was carried out on a Pro43----Gly mutant. By use of a combination of scalar correlation experiments acquired from H2O solution, 61 of the 76 1H spin systems could be assigned to particular amino acid types. The remaining resonances were assigned by a parallel series of experiments acquired from 2H2O solution. These spin system assignments provided a basis for complete sequential resonance assignments from interresidue backbone nuclear Overhauser effects (NOEs). Elements of secondary structure were identified from sequential and medium-range NOEs, backbone spin-spin coupling constants, and slowly exchanging amide protons. Four sections of helix are delineated, together with a short antiparallel beta-sheet interaction between the peptide loops involved in Ca2+ binding. The global fold is provided by combining these elements of secondary structure with a subset of the long-range, interhelix NOEs. Comparison with similar studies on the Ca2(+)-saturated protein indicates that at this crude level the structures are very similar. However, removal of the Ca2+ does dramatically affect the dynamics of the protein, as judged by amide proton exchange rates and aromatic ring rotation. This is particularly evident in the increased flexibility of the residues in the hydrophobic core.  相似文献   

14.
The resonances of all the non-exchangeable protons (except 5'H and 5"H) of d(CGAAAAATCGG) + d(CCGATTTTTCG), a putatively bent DNA duplex, have been assigned using 1H two-dimensional nuclear magnetic resonance methods. The nuclear Overhauser effect data indicate an overall B-form structure for this double-helical DNA undecamer. However, several features of the NMR data such as some unusually weak C8/C6 proton to C1' proton NOE cross-peaks, the presence of relatively intense C2H to C1'H NOE cross-peaks, and unusual chemical shifts of some 2", 2', and 1' protons suggest a substantial perturbation of the helix structure at the junctions and along the length of the tract of A residues. These structural deviations are considered in terms of models of DNA bending.  相似文献   

15.
The aromatic regions of the nuclear magnetic resonance spectra of horse ferricytochrome c and horse ferrocytochrome c are described. Resonance assignments have been made using NMR double-resonance techniques, spectral comparison of related proteins, the perturbing effects of extrinsic probes, and from knowledge of the X-ray structure of cytochrome c. 33 resonances arising from 39 aroumatic protons of ferrocytochrome c, and 18 resonances arising from 27 aromatic protons of ferricytochrome c have been assigned.  相似文献   

16.
Cross-relaxation effects are demonstrated between the imino protons and other protons in yeast tRNAPhe and H2O. A detailed examination has been made of the observed relaxation rate of the proton resonance at 11.8 ppm from DSS as a function of the D2O content in the solvent. This result, as well as the size and number of observed nuclear Overhauser effects, suggests that dipolar magnetization transfer between solvent H2O, amino, imino, and other tRNA protons may dominate the relaxation processes of the imino protons at low temperature. At higher temperatures the observed relaxation rate is dominated by chemical exchange. The selective nuclear Overhauser effects are shown to be an important aid in resonance assignments. By these means we were able to identify tow protons from the wobble base pair GU4 at 11.8 ppm and 10.4 ppm.  相似文献   

17.
Proton nuclear magnetic resonance (1H NMR) assignments for the murine epidermal growth factor (mEGF) in aqueous solution were determined by using two-dimensional NMR at pH 3.1 and 28 degrees C. The assignments are complete for all backbone hydrogen atoms, with the exception of the N-terminal amino group, and for 46 of the 53 side chains. Among the additional seven amino acid residues, three have complete assignments for all but one side-chain proton, and between two and four protons are missing for the remaining four residues. The sequential assignments by nuclear Overhauser effect spectroscopy are consistent with the chemically determined amino acid sequence. The NMR data show that the conformations of both the Tyr3-Pro4 and Cys6-Pro7 peptide bonds are trans in the predominant solution structure. Proton-deuterium exchange rate constants were also measured for 13 slowly exchanging amide protons. The information presented here has been used elsewhere to determine the three-dimensional structure of mEGF in aqueous solution.  相似文献   

18.
1H Nuclear magnetic resonance assignments are given for the NH and C alpha H protons of two alpha-helical segments of tuna ferricytochrome c. The assignments were obtained using two-dimensional nuclear magnetic resonance sequential assignment procedures and illustrate the applicability of these methods to medium-sized proteins. By comparing nuclear Overhauser intensities between the NH and C alpha H protons the precise structures of the two helical segments are compared and their deviations from ideality are discussed.  相似文献   

19.
Studies of proton-proton nuclear Overhauser effects were used to obtain individual assignments of 17 amide proton resonances in the 360 MHz proton nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor. First, optimizing the conditions for obtaining selective nuclear Overhauser effects in the presence of spin diffusion in macromolecules is discussed. Truncated driven nuclear Overhauser experiments were used to assing the amide proton resonances of the beta-sheet in the inhibitor. It is suggested that these techniques could serve quite generally to obtain individual resonance assignments in beta-sheet secondary structures of proteins. Combination of nuclear Overhauser studies with spin decoupling further resulted in individual assignments of the gamma-methyl resonances of the two isoleucines and numerous Calpha and Cbeta protons.  相似文献   

20.
The assignment of the 1H nuclear magnetic resonance (n.m.r.) spectrum of the trypsin inhibitor homologue K from the venom of Dendroaspis polylepis polylepis is described and documented. The assignments are based entirely on the amino acid sequence and on 2-dimensional n.m.r. experiments at 360 and 500 M Hz. Individual assignments were obtained for the backbone and C beta protons of all 57 residues of the inhibitor homologue K, with the exceptions of the N-terminal amino group, the amide protons of Arg16, Gly37 and Gly40 and the C beta protons of Arg16 and Pro19. The assignments for the non-labile protons of the amino acid side-chains are complete, with the exception of Gln29, Glu49 and all the proline, lysine and arginine residues. For Asn and Trp the labile side-chain protons have also been assigned. The chemical shifts for the assigned resonances are listed for an aqueous solution at 50 degrees C and pH 3.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号