首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have addressed questions raised by the observation in fetal rats of delayed ossification induced by caffeine at maternal doses above 80 mg/kg body weight per day. The effect of caffeine on endochondral bone development and mineralization has been studied in an experimental model system of bone formation which involves implantation of demineralized bone particles (DBP) in subcutaneous pockets of young growing rats. Caffeine's effects on cellular events associated with endochondral ossification were examined directly by quantitating cellular mRNA levels of chondrocyte and osteoblast growth and differentiation markers in DBP implants from caffeine-treated rats harvested at specific stages of development (day 7 through day 15). Oral caffeine administration to rats implanted with DBP resulted in a dose dependent inhibition of the formation of cartilage tissue in the implants. Histologic examination of the implants revealed a decrease in the number of cells which were transformed to chondrocytes compared to control implants. Those cartilaginous areas that did form, however, proceeded through the normal sequelae of calcified cartilage and bone formation. At the 100 mg/kg dose, cellular levels of mRNA for histone, collagen type II, and TGFβ were all reduced by greater than 40% of control implants consistent with the histological findings. Alkaline phosphatase activity in the implants and mRNA levels for proteins reflecting the hypertrophic chondrocyte and bone phenotype, collagen type I and osteocalcin were markedly decreased compared to controls. Lower doses of 50 and 12.5 mg/kg caffeine also resulted in decreased cellular proliferation and transformation to cartilage histologically and reflected by significant inhibition of type II collagen mRNA levels (day 7). The effects of caffeine on gene expression observed in vivo during the period of bone formation (day 11 to day 15) in the DBP model were similar to the inhibited expression of H4, alkaline phosphatase, osteocalcin, and osteopontin found in fetal rat calvarial derived osteoblast cultures following 24 hour exposure of the cultures to 0.4 mM caffeine. Thus the observed delayed mineralization in the fetal skeleton associated with caffeine appears to be related to an inhibition of endochondral bone formation at the early stages of proliferation of undifferentiated mesenchymal cells to cartilage specific cells as well as at later stages of bone formation.  相似文献   

3.
The epidermal growth factor receptor (EGFR) and its ligands function in diverse cellular functions including cell proliferation, differentiation, motility, and survival. EGFR signaling is important for the development of many tissues, including skin, lungs, intestines, and the craniofacial skeleton. We have now determined the role of EGFR signaling in endochondral ossification. We analyzed long bone development in EGFR-deficient mice. EGFR deficiency caused delayed primary ossification of the cartilage anlage and delayed osteoclast and osteoblast recruitment. Ossification of the growth plates was also abnormal resulting in an expanded area of growth plate hypertrophic cartilage and few bony trabeculae. The delayed osteoclast recruitment was not because of inadequate expression of matrix metalloproteinases, including matrix metalloproteinase-9, which have previously been shown to be important for osteoclast recruitment. EGFR was expressed by osteoclasts, suggesting that EGFR ligands may act directly to affect the formation and/or function of these cells. EGFR signaling regulated osteoclast formation. Inhibition of EGFR tyrosine kinase activity decreased the generation of osteoclasts from cultured bone marrow cells.  相似文献   

4.
Patterns of ossification are described in the endo-and exoskeleton of Alligator mississippiensis. The occurrence of a dermo-supraoccipital is discussed in light of the independence of dermal and endochondral bone. The development of the bony secondary palate is discussed in light of Haeckelian recapitulation. The sequence of ossification in the limb skeleton is shown to differ from the sequence of chondrification of the cartilaginous precursors. Patterns of ossification in Alligator are compared to lepidosaurs in terms of sequence and timing. Important differences relate to ossification patterns in the limb skeleton: lepidosaurs show a dominance of digit III > IV > II > I > V, whereas Alligator shows a dominance of digits III > II> IV > I > V in the ossification process. Ontogenetic repatterning in the ossification of the axial skeleton is discussed as it bears on the serial homology of dorsal ribs, sacral ribs and caudal ribs (transverse processes).  相似文献   

5.
STC1, a mammalian homologue of stanniocalcin (STC) which plays a major role in calcium/phosphate homeostasis in fish, has been recently isolated. We have characterized the spatiotemporal distribution of STC1 mRNA and protein during mouse embryonic development generally and osteogenesis specifically. Northern blotting analysis of whole embryos showed that STC1 mRNA is highly and differentially expressed during embryogenesis. By in situ hybridization, STC1 mRNA was detected early in mesenchymal condensations and was then found to be highly expressed in perichondrial cells, periosteal cells, and then osteoblasts during endochondral bone formation. In bones forming by intramembranous ossification, STC1 mRNA was not detected until osteogenic cells appeared. The cellular distribution of STC1 protein closely corresponded to that of its mRNA, but the protein was also detected in hypertrophic chondrocytes. In the MC3T3-E1 osteogenic cell model, STC1 protein and mRNA were detectable throughout proliferation and differentiation stages but levels were relatively higher late during nodule formation/mineralization phases. For comparison, STC1 mRNA was also found in epithelial cells of both embryonic and adult intestine that had not previously been described among tissues responsive to calcium/phosphate transport. These results suggest that STC1 is expressed in a time- and cell-specific manner and may play an autocrine/paracrine role during osteoblast development and bone formation.  相似文献   

6.
The type X collagen gene, COLIOA1, is specifically expressed by hypertrophic chondrocytes during endochondral ossification. Endochondral ossification is a well-coordinated process that involves a cartilage intermediate and leads to formation of most of the skeleton in vertebrates during skeletogenesis. Chondrocyte hypertrophy is a critical stage of endochondral ossification linking both bone and cartilage development. Given its specific association with chondrocyte hypertrophy, type X collagen plays essential roles in endochondral ossification. It was previously shown that transgenic mice with mutant type X collagen develop variable skeleton-hematopoietic abnormalities indicating defective endochondral ossification, while mutations and abnormal expression of human COLIOA1 cause abnormal chondrocyte hypertrophy that has been seen in many skeletal disorders, including skeletal chondrodysplasia and osteoarthritis. In this review, we summarized the skeletal chondrodysplasia with COLIOA1 gene mutation that shows growth plate defect. We also reviewed recent studies that correlate the type X collagen gene expression and chondrocyte hypertrophy with osteoarthritis. Due to its significant clinical relevance, the type X collagen gene regulation has been extensively studied over the past two decades. Here, we focus on recent progress characterizing the cis-enhancer elements and their binding factors that together confer hypertrophic chondroeyte-specific murine type X collagen gene (CollOal) expression. Based on literature review and our own studies, we surmise that there are multiple factors that contribute to hypertrophic chondrocyte-specific CoHOal expression. These factors include both transactivators (such as Runx2, MEF2C etc.) and repressors (such as AP1, NFATcl, Sox9 etc.), while other co-factors or epigenetic control of CollOal expression may not be excluded.  相似文献   

7.
The digit tips of children and rodents are known to regenerate following amputation. The skeletal structure that regenerates is the distal region of the terminal phalangeal bone that is associated with the nail organ. The terminal phalanx forms late in gestation by endochondral ossification and continues to elongate until sexual maturity (8 weeks of age). Postnatal elongation at its distal end occurs by appositional ossification, i.e. direct ossification on the surface of the terminal phalanx, whereas proximal elongation results from an endochondral growth plate. Amputation through the middle of the terminal phalanx regenerates whereas regenerative failure is observed following amputation to remove the distal 2/3 of the bone. Regeneration is characterized by the formation of a blastema of proliferating cells that appear undifferentiated and express Bmp4. Using chondrogenic and osteogenic markers we show that redifferentiation does not occur by endochondral ossification but by the direct ossification of blastema cells that form the rudiment of the digit tip. Once formed the rudiment elongates by appositional ossification in parallel with unamputated control digits. Regenerated digits are consistently shorter than unamputated control digits. Finally, we present a case study of a child who suffered an amputation injury at a proximal level of the terminal phalanx, but failed to regenerate despite conservative treatment and the presence of the nail organ. These clinical and experimental findings expand on previously published observations and initiate a molecular assessment of a mammalian regeneration model.  相似文献   

8.
Mice homozygous for targeted disruption of the zinc finger domain of Gli2 (Gli2(zfd/zfd)) die at birth with developmental defects in several organ systems including the skeleton. The current studies were undertaken to define the role of Gli2 in endochondral bone development by characterizing the molecular defects in the limbs and vertebrae of Gli2(zfd/zfd) mice. The bones of mutant mice removed by cesarian section at E16.5 and E18.5 demonstrated delayed endochondral ossification. This was accompanied by an increase in the length of cartilaginous growth plates, reduced bone tissue in the femur and tibia and by failure to develop the primary ossification centre in vertebral bodies. The growth plates of tibiae and vertebrae exhibited increased numbers of proliferating and hypertrophic chondrocytes with no apparent alteration in matrix mineralisation. The changes in growth plate morphology were accompanied by an increase in expression of FGF2 in proliferating chondrocytes and decreased expression of Indian hedgehog (Ihh), patched (Ptc) and parathyroid-hormone-related protein (PTHrP) in prehypertrophic cells. Furthermore, there was a reduction in expression of angiogenic molecules in hypertrophic chondrocytes, which was accompanied by a decrease in chondroclasts at the cartilage bone interface, fewer osteoblasts lining trabecular surfaces and a reduced volume of metaphyseal bone. These results indicate that functional Gli2 is necessary for normal endochondral bone development and that its absence results in increased proliferation of immature chondrocytes and decreased resorption of mineralised cartilage and bone formation.  相似文献   

9.
10.
11.
12.
13.
14.
BMP-13 Emerges as a Potential Inhibitor of Bone Formation   总被引:1,自引:1,他引:0       下载免费PDF全文
Bone morphogenetic protein-13 (BMP-13) plays an important role in skeletal development. In the light of a recent report that mutations in the BMP-13 gene are associated with spine vertebral fusion in Klippel-Feil syndrome, we hypothesized that BMP-13 signaling is crucial for regulating embryonic endochondral ossification. In this study, we found that BMP-13 inhibited the osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. The endogenous BMP-13 gene expression in MSCs was examined under expansion conditions. The MSCs were then induced to differentiate into osteoblasts in osteo-inductive medium containing exogenous BMP-13. Gene expression was analysed by real-time PCR. Alkaline phosphatase (ALP) expression and activity, proteoglycan (PG) synthesis and matrix mineralization were assessed by cytological staining or ALP assay. Results showed that endogenous BMP-13 mRNA expression was higher than BMP-2 or -7 during MSC growth. BMP-13 supplementation strongly inhibited matrix mineralization and ALP activity of osteogenic differentiated MSCs, yet increased PG synthesis under the same conditions. In conclusion, BMP-13 inhibited osteogenic differentiation of MSCs, implying that functional mutations or deficiency of BMP-13 may allow excess bone formation. Our finding provides an insight into the molecular mechanisms and the therapeutic potential of BMP-13 in restricting pathological bone formation.  相似文献   

15.
Thoracic ossification of the ligamentum flavum (TOLF) is ectopic ossification of the spinal ligaments. Histologically, the development of TOLF can be described as the process of endochondral ossification. However, the underlying aetiology has not been completely clarified. In this investigation, the gene expression profile associated with leucine‐rich repeat‐containing G‐protein‐coupled receptors (LGR) and Wnt signalling pathway in the thoracic ligamentum flavum cells (TLFCs) of different ossification stages was analysed via RNA sequencing. We further confirmed the significant differences in the related gene expression profile by Gene Ontology (GO) enrichment analysis. LGR5 was first identified in primary human TLFCs during osteogenic differentiation. To evaluate the effect of LGR5 on osteogenic differentiation, LGR5 has been knocked down and overexpressed in human TLFCs. We observed that the knockdown of LGR5 inhibited the activity of Wnt signalling and attenuated the potential osteogenic differentiation of TLFCs, while overexpression of LGR5 activated the Wnt signalling pathway and increased osteogenic differentiation. Our results provide important evidence for the potent positive mediatory effects of LGR5 on osteogenesis by enhancing the Wnt signalling pathway in TOLF.  相似文献   

16.
To date, no histochemical data exist concerning the process of ossification of developing pedicles in deer. Four different zones of the growing pedicle (subcutaneous tissue; fibrous layer of the periosteum; cambial layer of the periosteum; women bone of the primary spongiosa) were analysed in direct correlation to their histological appearance. The level of extractable specific alkaline phosphatase in the preosseous zones of the pedicle was 4-fold higher than levels in the epiphyseal growth plate previously reported. These results reflect that rapid bone formation takes place in the growing pedicle. Highest buffer-extractable alkaline phosphatase activity was found in the cambial layer directly in front of the mineralization area of the pedicle-bone, connected with maximal values for organically bound phosphate and inorganic phosphate. Moreover, the values for buffer-extractable alkaline phosphatase, organically bound phosphate and inorganic phosphate decreased with increasing mineralization in the zone of the primary spongiosa. The present histological and biochemical findings on the process of ossification in the pedicle show similarities to typical endochondral ossification. The process of pedicle growth may serve as a new and important system for chondrogenic and osteogenic studies, including a better understanding of antler development.  相似文献   

17.
Much is known regarding the role of Indian hedgehog (Ihh) in endochondral ossification, where Ihh regulates multiple steps of chondrocyte differentiation. The Ihh-/- phenotype is most notable for severely foreshortened limbs and a complete absence of mature osteoblasts. A far less explored phenotype in the Ihh-/- mutant is found in the calvaria, where bones form predominately through intramembranous ossification. We investigated the role of Ihh in calvarial bone ossification, finding that proliferation was largely unaffected. Instead, our results indicate that Ihh is a pro-osteogenic factor that positively regulates intramembranous ossification. We confirmed through histologic and quantitative gene analysis that loss of Ihh results in reduction of cranial bone size and all markers of osteodifferentiation. Moreover, in vitro studies suggest that Ihh loss reduces Bmp expression within the calvaria, an observation that may underlie the Ihh-/- calvarial phenotype. In conjunction with the newly recognized roles of Hedgehog deregulation in craniosynostosis, our study defines Ihh as an important positive regulator of cranial bone ossification.  相似文献   

18.
We investigated the development of the whole skeleton of the soft‐shelled turtle Pelodiscus sinensis, with particular emphasis on the pattern and sequence of ossification. Ossification starts at late Tokita‐Kuratani stage (TK) 18 with the maxilla, followed by the dentary and prefrontal. The quadrate is the first endoskeletal ossification and appears at TK stage 22. All adult skull elements have started ossification by TK stage 25. Plastral bones are the first postcranial bones to ossify, whereas the nuchal is the first carapacial bone to ossify, appearing as two unstained anlagen. Extensive examination of ossification sequences among autopodial elements reveals much intraspecific variation. Patterns of ossification of cranial dermal elements are more variable than those of endochondral elements, and dermal elements ossify before endochondral ones. Differences in ossification sequences with Apalone spinifera include: in Pelodiscus sinensis the jugal develops relatively early and before the frontal, whereas it appears later in A. spinifera; the frontal appears shortly before the parietal in A. spinifera whereas in P. sinensis the parietal appears several stages before the frontal. Chelydrids exhibit an early development of the postorbital bone and the palatal elements as compared to trionychids. Integration of the onset of ossification data into an analysis of the sequence of skeletal ossification in cryptodirans using the event‐pairing and Parsimov methods reveals heterochronies, some of which reflect the hypothesized phylogeny considered taxa. A functional interpretation of heterochronies is speculative. In the chondrocranium there is no contact between the nasal capsules and planum supraseptale via the sphenethmoid commissurae. The pattern of chondrification of forelimb and hind limb elements is consistent with a primary axis and digital arch. There is no evidence of anterior condensations distal to the radius and tibia. A pattern of quasi‐ simultaneity is seen in the chondrogenesis of the forelimb and the hind limb. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Vascular endothelial growth factor (VEGF) has been indicated to play a role during endochondral ossification by stimulation of blood vessel invasion into hypertrophic cartilage resulting in its replacement by trabecular bone. We could demonstrate a dose-dependent chemoattractive effect of VEGF-A and PlGF-1, but not VEGF-E or VEGF-C, on human mesenchymal progenitor cells. Quantitative realtime PCR revealed the expression of VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), and VEGFR-3 (Flt-4), which markedly declined during osteogenic differentiation. In addition, expression of neuropilin-1 and -2 was detected by RT-PCR. In an in vitro kinase assay, we could demonstrate activation of VEGFR-1 and VEGFR-2 upon stimulation with specific ligands. These findings are consistent with the idea that the chemotactic effect of VEGF-A on MPC is mediated via VEGFR-1, and that VEGF-A and PlGF-1, have a functional role for recruitment of osteoprogenitor cells in the course of endochondral bone formation or remodeling.  相似文献   

20.
The development of the cranial and branchial skeleton of the surfperch Amphistichus argenteus, a member of the family Embiotocidae, is described, and phylogenetic and functional aspects of the skull development of this species are discussed. The earliest bones to appear are those dermal elements of the branchial skeleton involved with feeding, and the bones, both dermal and endochondral, located in the basicranial region of the neurocranium. These are followed by dermal bones associated with the lateral line system and finally by the remainder of the bones of the branchial skeleton and the cartilaginous bones of the otic capsules. The last bone to develop is the ethmoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号