首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.  相似文献   

2.
Arginine side-chains are often key for enzyme catalysis, protein–ligand and protein–protein interactions. The importance of arginine stems from the ability of the terminal guanidinium group to form many key interactions, such as hydrogen bonds and salt bridges, as well as its perpetual positive charge. We present here an arginine 13Cζ-detected NMR experiment in which a double-quantum coherence involving the two 15Nη nuclei is evolved during the indirect chemical shift evolution period. As the precession frequency of the double-quantum coherence is insensitive to exchange of the two 15Nη; this new approach is shown to eliminate the previously deleterious line broadenings of 15Nη resonances caused by the partially restricted rotation about the Cζ–Nε bond. Consequently, sharp and well-resolved 15Nη resonances can be observed. The utility of the presented method is demonstrated on the L99A mutant of the 19 kDa protein T4 lysozyme, where the measurement of small chemical shift perturbations, such as one-bond deuterium isotope shifts, of the arginine amine 15Nη nuclei becomes possible using the double-quantum experiment.  相似文献   

3.
Based on the difference in the CD14 and CD16 expression, two subsets of monocytes were identified in human and other mammalian blood. These subsets have different patterns of adhesion molecules and chemokine receptors that suggests the different mode of their interaction with endothelium and tissue traffic. Here, we investigated the ability of CD14+CD16+ and CD14++CD16 monocytes to adhere to endothelial cell monolayer in presence or absence of pro- and anti-inflammatory cytokines. We demonstrated that CD14+CD16+ monocytes had a higher level of adhesion to intact monolayer of endothelial cells than CD14++CD16 monocytes. Adhesion of CD14++CD16 and CD14+CD16+ monocytes significantly increased in the presence of TNFα or its combination with other cytokines. IFNγ and IL-4 alone did not affect the adhesion of monocytes. These results show that CD14++CD16 and CD14+CD16+ monocytes can be recruited to the inflamed endothelium, but CD14+CD16+ monocytes adhere to endothelial cells without inflammations twice as strongly as CD14++CD16 monocytes.  相似文献   

4.
In two mountain ecosystems at the Alptal research site in central Switzerland, pulses of 15NO3 and 15NH4 were separately applied to trace deposited inorganic N. One forested and one litter meadow catchment, each approximately 1600 m2, were delimited by trenches in the Gleysols. K15NO3 was applied weekly or fortnightly over one year with a backpack sprayer, thus labelling the atmospheric nitrate deposition. After the sampling and a one-year break, 15NH4Cl was applied as a second one-year pulse, followed by a second sampling campaign. Trees (needles, branches and bole wood), ground vegetation, litter layer and soil (LF, A and B horizon) were sampled at the end of each labelling period. Extractable inorganic N, microbial N, and immobilised soil N were analysed in the LF and A horizons. During the whole labelling period, the runoff water was sampled as well. Most of the added tracer remained in both ecosystems. More NO3 than NH4+ tracer was retained, especially in the forest. The highest recovery was in the soil, mainly in the organic horizon, and in the ground vegetation, especially in the mosses. Event-based runoff analyses showed an immediate response of 15NO3 in runoff, with sharp 15N peaks corresponding to discharge peaks. NO3 leaching showed a clear seasonal pattern, being highest in spring during snowmelt. The high capacity of N retention in these ecosystems leads to the assumption that deposited N accumulates in the soil organic matter, causing a progressive decline of its C:N ratio.  相似文献   

5.
We present a highly sensitive pulse sequence, carbonyl carbon label selective 1H–15N HSQC (CCLS-HSQC) for the detection of signals from 1H–15N units involved in 13C′–15N linkages. The CCLS-HSQC pulse sequence utilizes a modified 15N CT evolution period equal to 1/( ) (∼33 ms) to select for 13C′–15N pairs. By collecting CCLS-HSQC and HNCO data for two proteins (8 kDa ubiquitin and 20 kDa HscB) at various temperatures (5–40°C) in order to vary correlation times, we demonstrate the superiority of the CCLS-HSQC pulse sequence for proteins with long correlation times (i.e. higher molecular weight). We then show that the CCLS-HSQC experiment yields assignments in the case of a 41 kDa protein incorporating pairs of 15N- and 13C′-labeled amino acids, where a TROSY 2D-HN(CO) had failed. Although the approach requires that the 1H–15N HSQC cross peaks be observable, it does not require deuteration of the protein. The method is suitable for larger proteins and is less affected by conformational exchange than HNCO experiments, which require a longer period of transverse 15N magnetization. The method also is tolerant to the partial loss of signal from isotopic dilution (scrambling). This approach will be applicable to families of proteins that have been resistant to NMR structural and dynamic analysis, such as large enzymes, and partially folded or unfolded proteins.  相似文献   

6.
7.
Rudolf VH  Rödel MO 《Oecologia》2005,145(2):316-325
In many organisms reproductive success is strongly dependent on several breeding site characteristics, which often vary in space and time. Although we have a good understanding of how ovipositing organisms respond to single factors, we still have little information about how they respond under more complex natural conditions. We examined the oviposition behavior of a tree-hole breeding frog, Phrynobatrachus guineensis, with respect to abiotic and biotic oviposition site characteristics, including desiccation risk and the presence of conspecific offspring using both observation and experiments. Based on daily monitoring data, compiled from 69 natural oviposition sites during a complete reproductive season, we developed oviposition site-selection models. A model based on water presence, sediment depth and maximal possible water depth showed the best predictive performance and was transferable to the subsequent season. Field observations and experiments revealed that frogs could estimate water-holding capacity of sites and timed oviposition with respect to future water presence. Despite the negative effects on larval growth and the availability of sites without conspecifics, data suggest that ovipositing individuals are attracted to conspecific offspring because they serve as a cue for low predation risk. Our results imply that a sites potential for being used at least once for oviposition was determined by abiotic factors, whereas the relative use of breeding sites was determined by a response to conspecifics. Our study demonstrates the importance of including multiple biotic and abiotic factors in the analysis of oviposition site-selection.  相似文献   

8.
The limits of resolution that can be obtained in 1H–15N 2D NMR spectroscopy of isotopically enriched nanocrystalline proteins are explored. Combinations of frequency switched Lee–Goldburg (FSLG) decoupling, fast magic angle sample spinning (MAS), and isotopic dilution via deuteration are investigated as methods for narrowing the amide 1H resonances. Heteronuclear decoupling of 15N from the 1H resonances is also studied. Using human ubiquitin as a model system, the best resolution is most easily obtained with uniformly 2H and 15N enriched protein where the amides have been exchanged in normal water, MAS at 20 kHz, and WALTZ-16 decoupling of the 15N nuclei. The combination of these techniques results in average 1H lines of only 0.26 ppm full width at half maximum. Techniques for optimizing instrument stability and 15N decoupling are described for achieving the best possible performance in these experiments.  相似文献   

9.
A confined aquifer in the Malm Karst of the Franconian Alb, South Germany was investigated in order to understand the role of the vadose zone in denitrifiaction processes. The concentrations of chemical tracers Sr2+ and Cl and concentrations of stable isotope 18O were measured in spring water and precipitation during storm events. Based on these measurements a conceptual model for runoff was constructed. The results indicate that pre-event water, already stored in the system at the beginning of the event, flows downslope on vertical and lateral preferential flow paths. Chemical tracers used in a mixing model for hydrograph separation have shown that the pre-event water contribution is up to 30%. Applying this information to a conceptual runoff generation model, the values of 15N and 18O in nitrate could be calculated. Field observations showed the occurence of significant microbial denitrification processes above the soil/bedrock interface before nitrate percolates through to the deeper horizon of the vadose zone. The source of nitrate could be determined and denitrification processes were calculated. Assuming that the nitrate reduction follows a Rayleigh process one could approximate a nitrate input concentration of about 170 mg/l and a residual nitrate concentration of only about 15%. The results of the chemical and isotopic tracers postulate fertilizers as nitrate source with some influence of atmospheric nitrate. The combined application of hydrograph separation and determination of isotope values in 15N and 18O of nitrate lead to an improved understanding of microbial processes (nitrification, denitrification) in dynamic systems.  相似文献   

10.
The structures and stabilities of eleven N13 + and N13 isomers have been investigated with second-order Møller–Plesset (MP2) and density functional theory (DFT) methods. Five N13 + isomers and six N13 isomers are all reasonable local minima on their potential energy hypersurfaces. The most stable N13 + cation is structure C-2 with C2v symmetry, which contains a pentazole ring and two N4 open chains. It is different from those of the N7 + and N9 + clusters, but similar to the N11 + cluster. Meanwhile, the most stable N13 structure A-2 is composed of a pentazole ring and a six-membered ring connected by two nitrogen atoms. It is not only different from those of the N7 and N9 clusters, but also from the N11 cluster. The decomposition pathways of structures C-2 and A-2 were investigated at the B3LYP/(aug)-cc-pVDZ level. From the barrier heights of the structures C-2 and A-2 decomposition processes, it is suggested that C-2 is difficult to observe experimentally and A-2 may be observed as a short-lived species. Figure Optimized geometrical parameters of N13 + isomer C-2   相似文献   

11.
A method for determining the lifetime of unstable ions is described. The method is based on measuring the decrease in the ion beam current onto a fixed detector with increasing path length of the ion beam from the ion source to the detector. The measurements performed for D? 2 and HD? molecular ions have shown that their lifetimes are 3.5 ± 0.1 and 4.4 ± 0.1 μs, respectively.  相似文献   

12.
Interleukin-36α (IL-36α) is a recently characterised member of the interleukin-1 superfamily. It is involved in the pathogenesis of inflammatory arthritis in one third of psoriasis patients. By binding of IL-36α to its receptor IL-36R via the NF-κB pathway other cytokines involved in inflammatory and apoptotic cascade are activated. The efficacy of complex formation is controlled by N-terminal processing. To obtain a more detailed view on the structure function relationship we performed a heteronuclear multidimensional NMR investigation and here report the 1H, 13C, and 15N resonance assignments for the backbone and side chain nuclei of the pro-inflammatory cytokine interleukin-36α.  相似文献   

13.
Among various types of ionizing radiation, the beta emitter radionuclides are involved in many sectors of human activity, such as nuclear medicine, nuclear industries and biomedicine, with a consequently increased risk of accidental, occupational or therapeutic exposure. Despite their recognized importance, there is little information about the effect of beta particles at the cellular level when compared to other types of ionizing radiation. Thus, the objective of the present study was to evaluate the genotoxic and cytotoxic effects of 90Sr/90Y—a pure, highly energetic beta source—on Chinese hamster ovary (CHO) cells and to compare them with data obtained with 60Co. CHO cells irradiated with different doses of 60Co (0.34 Gy min–1) and 90Sr/90Y (0.23 Gy min–1) were processed for analysis of clonogenic death, induction of micronuclei (MN) and interphase death. The survival curves obtained for both types of radiation were fitted by the exponential quadratic model and were found to be similar. Also, the cytogenetic results showed similar frequencies of radio-induced MN between gamma and beta radiations and the MN distribution pattern among cells did not follow the expected Poisson probability pattern. The relative variance values were significantly higher in cells irradiated with 90Sr/90Y than with 60Co in all exposure doses. The irradiated cells showed more necrotic cells 72 h and 96 h after exposure to beta than to gamma radiation. In general, the 90Sr/90Y -radiation was more damaging than 60Co -rays. The data obtained also demonstrated the need to use several parameters for a better estimate of cellular sensitivity to the action of genotoxic agents, which would be important in terms of radiobiology, oncology and therapeutics.  相似文献   

14.
Tropical small mountainous rivers deliver a poorly quantified, but potentially significant, amount of carbon to the world’s oceans. However, few historical records of land–ocean carbon transfer exist for any region on Earth. Corals have the potential to provide such records, because they draw on dissolved inorganic carbon (DIC) for calcification. In temperate systems, the stable- (δ13C) and radiocarbon (Δ14C) isotopes of coastal DIC are influenced by the δ13C and Δ14C of the DIC transported from adjacent rivers. A similar pattern should exist in tropical coastal DIC and hence coral skeletons. Here, δ13C and Δ14C measurements were made in a 56-year-old Montastraea faveolata coral growing ~1 km from the mouth of the Rio Fajardo in eastern Puerto Rico. Additionally, the δ13C and Δ14C values of the DIC of the Rio Fajardo and its adjacent coastal waters were measured during two wet and dry seasons. Three major findings were observed: (1) synchronous depletions of both δ13C and Δ14C in the coral skeleton are annually coherent with the timing of peak river discharge, (2) riverine DIC was always more depleted in δ13C and Δ14C than seawater DIC, and (3) the correlation of δ13C and Δ14C was the same in both coral skeleton and the DIC of the river and coastal waters. These results indicate that coral skeletal δ13C and Δ14C are recording the delivery of riverine DIC to the coastal ocean. Thus, coral records could be used to develop proxies of historical land–ocean carbon flux for many tropical regions. Such information could be invaluable for understanding the role of tropical land–ocean carbon flux in the context of land-use change and global climate change.  相似文献   

15.
Nitrate dual stable isotopes (δ15N and δ18O of NO3 ?) have proven to be a powerful technique to elucidate nitrogen (N) cycling pathways in aquatic systems. We applied this technique for the first time in the pelagic zone of a small temperate meso-eutrophic lake to identify the dominant N cycling pathways, and their spatial and temporal variability. We measured the lake NO3 ? δ15N and δ18O signatures over an annual cycle and compared them to that of the watershed. Both δ15N and δ18O of NO3 ? in the lake increased during summer relative to the inputs. Relationships between lake NO3 ? isotopic composition and concentrations were different across thermal strata with an apparent isotope effect in the epilimnion of 15εepi = 4.6‰ and 18εepi = 10.9‰. We found a strong deviation of the lake NO3 ? δ18O and δ15N from the expected 1:1 line for assimilation (slope = 1.73) suggesting that nitrification was co-occurring. We estimated that nitrification could support between 5 and 30% of nitrate-based production during the growing season, but was negligible in early spring and fall, and probably more dominant under ice. We showed that the technique is promising to study N processes at the ecosystem scale in shallow lakes, particularly during winter. Our results suggest that recycled NO3 ? could support primary productivity and influence phytoplankton composition in the surface waters of small lakes.  相似文献   

16.
To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of 13Cα chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue α/β protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed 13Cα chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical 13Cα chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed 13Cα chemical shifts, Δ ca,i , for the individual residues along the sequence. This indicates that the Δ ca,i -values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures.  相似文献   

17.
An extension to HN(CO-α/β-N,Cα-J)-TROSY (Permi and Annila in J Biomol NMR 16:221–227, 2000) is proposed that permits the simultaneous determination of the four coupling constants 1 J N′(i)Cα(i), 2 J HN(i)Cα(i), 2 J Cα(i−1)N′(i), and 3 J Cα(i−1)HN(i) in 15N,13C-labeled proteins. Contrasting the original scheme, in which two separate subspectra exhibit the 2 J CαN′ coupling as inphase and antiphase splitting (IPAP), we here record four subspectra that exhibit all combinations of inphase and antiphase splittings possible with respect to both 2 J CαN′ and 1 J N′Cα (DIPAP). Complementary sign patterns in the different spectrum constituents overdetermine the coupling constants which can thus be extracted at higher accuracy than is possible with the original experiment. Fully exploiting data redundance, simultaneous 2D lineshape fitting of the E.COSY multiplet tilts in all four subspectra provides all coupling constants at ultimate precision. Cross-correlation and differential-relaxation effects were taken into account in the evaluation procedure. By applying a four-point Fourier transform, the set of spectra is reversibly interconverted between DIPAP and spin-state representations. Methods are exemplified using proteins of various size.  相似文献   

18.
Lipase r27RCL is a 296-residue, 33 kDa monomeric enzyme with high ester hydrolysis activity, which has significant applications in the baking, paper and leather industries. The lipase gene proRCL from Rhizopus microsporus var. chinensis (also Rhizopus chinensis) CCTCC M201021 was cloned as a fusion construct C-terminal to a maltose-binding protein (MBP) tag, and expressed as MBP-proRCL in an Escherichia coli BL21 trxB (DE3) expression system with uniform 2H,13C,15N-enrichment and Ile-δ1, Leu, and Val 13CH3 methyl labeling. The fusion protein was hydrolyzed by Kex2 protease at the recognition site Lys-Arg between residues ?29 and ?28 of the prosequence, producing the enzyme form called r27RCL. Here we report extensive backbone 1H, 15N, and 13C, as well as Ile-δ1, Leu, and Val side chain methyl, NMR resonance assignments for r27RCL.  相似文献   

19.
Biogeochemical theory emphasizes nitrogen (N) limitation and the many factors that can restrict N accumulation in temperate forests, yet lacks a working model of conditions that can promote naturally high N accumulation. We used a dynamic simulation model of ecosystem N and δ15N to evaluate which combination of N input and loss pathways could produce a range of high ecosystem N contents characteristic of forests in the Oregon Coast Range. Total ecosystem N at nine study sites ranged from 8,788 to 22,667 kg ha−1 and carbon (C) ranged from 188 to 460 Mg ha−1, with highest values near the coast. Ecosystem δ15N displayed a curvilinear relationship with ecosystem N content, and largely reflected mineral soil, which accounted for 96–98% of total ecosystem N. Model simulations of ecosystem N balances parameterized with field rates of N leaching required long-term average N inputs that exceed atmospheric deposition and asymbiotic and epiphytic N2-fixation, and that were consistent with cycles of post-fire N2-fixation by early-successional red alder. Soil water δ15NO3 patterns suggested a shift in relative N losses from denitrification to nitrate leaching as N accumulated, and simulations identified nitrate leaching as the primary N loss pathway that constrains maximum N accumulation. Whereas current theory emphasizes constraints on biological N2-fixation and disturbance-mediated N losses as factors that limit N accumulation in temperate forests, our results suggest that wildfire can foster substantial long-term N accumulation in ecosystems that are colonized by symbiotic N2-fixing vegetation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号