首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Primary and secondary extracellular proteases produced by free or immobilized cells of the white-rot fungus Phanerochaete chrysosporium have been studied in relation to lignin peroxidase (LiP) decay. Proteases produced during primary metabolism exhibited a maximum activity on day 2; they could totally inactivate LiP activity and partially fragment LiP. Proteases produced during secondary metabolism did not inactivate or decay LiP.These proteases most likely are aspartic- and thiol-proteases.  相似文献   

2.
Six deep-sea proteolytic bacteria taken from Aleutian margin sediments were screened; one of them produced a cold-adapted neutral halophilic protease. These bacteria belong to Pseudoalteromonas spp., which were identified by the 16S rDNA sequence. Of the six proteases produced, two were neutral cold-adapted proteases that showed their optimal activity at pH 7–8 and at temperature close to 35°C, and the other four were alkaline proteases that showed their optimal activity at pH 9 and at temperature of 40–45°C. The neutral cold-adapted protease E1 showed its optimal activity at a sodium chloride concentration of 2 M, whereas the activity of the other five proteases decreased at elevated sodium chloride concentrations. Protease E1 was purified to electrophoretic homogeneity and its molecular mass was 34 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of protease E1 was determined to be 32,411 Da by mass spectrometric analysis. Phenylmethyl sulfonylfluoride (PMSF) did not inhibit the activity of this protease, whereas it was partially inhibited by ethylenediaminetetra-acetic acid sodium salt (EDTA-Na). De novo amino acid sequencing proved protease E1 to be a novel protein.  相似文献   

3.
Two proteases, designated I and II, have been isolated from sporulating cells of Bacillus subtilis. They were partially purified by ammonium sulfate fractionation, Sephadex chromatography and affinity columns. Protease I was found to be similar to an already characterized B. subtilis protease. Protease II is trypsin-like in its substrate specificity and is distinct from protease I in its pH optimum, pH stability, molecular weight, substrate specificity, heat stability and sensitivity to various inhibitors. While both enzymes were produced primarily during sporulation, they attained maximum levels of activity at different times. Distinct functions for these proteases in post exponential B. subtilis are likely.  相似文献   

4.
This paper describes the characterization of proteases in Microcystis aeruginosa PCC7806 cells being inhibited by a metabolite produced by another Microcystis strain, Microcystis Ku1. With casein and oligopeptide substrates and specific inhibitors we detected activity similar to bacterial serine endoproteases. Substrate SDS-polyacrylamide gel electrophoresis revealed the presence of nine bands of proteases (ca. 35∼125 kDa). The cyanobacterial enzymes were insensitive to endogenous trypsin-inhibitory metabolites. Microcystis Ku1 produced a metabolite, tentatively characterized as microviridin, inhibiting both cyanobacterial proteases and trypsin at an estimated IC50 of, respectively, 2.2 and 9.0 μg mL−1. On activity gels, inhibitors specific to animal trypsin and elastase and the putative microviridin led to an inactivation of the proteases associated with the 88 and 110 kDa bands. We hypothesize that in Microcystis populations there is a “cross-talk” between the inhibitors and the proteases, and only the colonies of identical chemotypes can possibly aggregate to form blooms.  相似文献   

5.
Xylella fastidiosa is a pathogenic bacterium found in several plants. These bacteria secrete extracellular proteases into the culture broth as visualized in sodium-dodecyl-sulfate polyacrylamide activity gels containing gelatin as a copolymerized substrate. Three major protein bands were produced by the citrus strain with molar masses (MM) of 122, 84 and 65 kDa. Grape strain 9,713 produced two bands of approximately 84 and 64 kDa. These organisms produced zones of hydrolysis in agar plates amended with gelatin, casein and hemoglobin. Gelatin was the best substrate for these proteases. Sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE) activity gel indicated that the protease of Xylella fastidiosa from citrus and grape were completely inhibited by PMSF and partially inhibited by EDTA. The optimal temperature for protease activity was 30 degrees C with an optimal pH of 7.0. Among the proteolytic enzymes secreted by the phytopathogen, chitinase and beta-1,3-glucanase activities were also detected in cultures of Xylella fastidiosa (citrus). From these results, it is suggested that proteases produced by strains of Xylella fastidiosa from citrus and grape, belong to the serine- and metallo-protease group, respectively.  相似文献   

6.
In the genome of a thermophilic bacterium, Thermus thermophilus HB27, three genes, TTC0418, TTC0746 and TTC1975, were annotated as ATP-dependent protease La (Lon). Sequence comparisons indicated that TTC0418 and TTC0746 showed significant similarities to bacterial LonA-type proteases, such as Escherichia coli Lon protease, especially in regions corresponding to domains for ATP-binding and hydrolysis, and for proteolysis, but TTC1975 exhibited a similarity only at the C-terminal proteolytic domain. The enzymatic analyses, using purified recombinant proteins produced by E. coli, revealed that TTC0418 and TTC0746 exhibited peptidase and protease activities against two synthetic peptides and casein, respectively, in an ATP-dependent manner, and at the same time, both the enzymes had significant ATPase activities in the presence of substrates. On the other hand, TTC1975 possessed a protease activity against casein, but addition of ATP did not enhance this activity. Moreover, a T. thermophilus mutant deficient in both TTC0418 and TTC0746 showed a similar growth characteristic to an E. coli lon mutant, i.e., a growth defect lag after a nutritional downshift. These results indicate that TTC0418 and TTC0746 are actually members of bacterial LonA-type proteases with different substrate specificities, whereas TTC1975 should not be classified as a Lon protease. Finally, the effects of mutations deficient in these proteases were assessed on production of several heterologous gene products from Pyrococcus horikoshii and Geobacillus stearothermophilus. It was shown that TTC0746 mutation was more effective in improving production than the other two mutations, especially for production of P. horikoshii α-mannosidase and G. stearothermophilus α-amylase, indicating that the TTC0746 mutant of T. thermophilus HB27 may be useful for production of heterologous proteins from thermophiles and hyperthermophiles.  相似文献   

7.
Alkaline xylanases from alkaliphilic Bacillus strains NCL (87-6-10) and Sam III were compared with the commercial xylanases Pulpzyme HC and Biopulp for their compatibility with detergents and proteases for laundry applications. Among the four xylanases evaluated, the enzyme from the alkaliphilic Bacillus strain NCL (87-6-10) was the most compatible. The enzyme retained its full activity (40 °C for 1 h) in the presence of detergents, whereas Pulpzyme HC and Sam III showed only 30% and 50% of their initial activity, respectively. Biopulp, though stable to detergents, had only marginal activity (5%)at pH 10. However, all four enzymes retained significant activity (80%) for 60 min in the presence of the proteases Alcalase and Conidiobolus protease. Supplementation of the enzyme enhanced the cleaning ability of the detergents.  相似文献   

8.
The spread of drug resistance through malaria parasite populations calls for the development of new therapeutic strategies. However, the seemingly promising genomics-driven target identification paradigm is hampered by the weak annotation coverage. To identify potentially important yet uncharacterized proteins, we apply support vector machines using profile kernels, a supervised discriminative machine learning technique for remote homology detection, as a complement to the traditional alignment based algorithms. In this study, we focus on the prediction of proteases, which have long been considered attractive drug targets because of their indispensable roles in parasite development and infection. Our analysis demonstrates that an abundant and complex repertoire is conserved in five Plasmodium parasite species. Several putative proteases may be important components in networks that mediate cellular processes, including hemoglobin digestion, invasion, trafficking, cell cycle fate, and signal transduction. This catalog of proteases provides a short list of targets for functional characterization and rational inhibitor design. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Rui Kuang and Jianying Gu have contributed equally to this work. An erratum to this article can be found at  相似文献   

9.
A strain ofAlternaria alternata (Fr.) Keissl, when grown on wheat bran Czapek Dox medium was found to secrete one neutral and two alkaline proteases. The purified enzymes were found to be endo peptidases, the alkaline proteases being serine proteases and neutral proteases being cysteine proteases. Fructose when added to the culture medium was found to give rise to a new neutral protease at the expense of the neutral protease produced in the absence of fructose and was also found to enhance the production of alkaline proteases. It also appears that fructose modifies the alkaline proteases with respect to some characteristics such asV max, Ea etc. Sodium dodecyl sulphate Polyacrylamide gel electrophoresis indicated a significantly altered protein profile in fructose supplemented medium.  相似文献   

10.
Multiple peptidase activities are expressed in the dimorphic fungus Mucor racemosus. Peptide hydrolysis was measured using an enzyme-coupled colorimetric assay. Aminopeptidase as well as carboxypeptidase activities increased during spore, swollen spore, and budding yeast-to-hyphae conversions, and activities achieved a maximum level prior to the period of rapid germ tube formation. These increases in peptidase activity were prevented by cycloheximide. Three distinct aminopeptidases (AP) and three distinct carboxypeptidases (CP) were partially purified by gel filtration column chromatography. AP1 (235 kDa), AP2 (112 kDa), and AP3 (70 kDa) were all expressed in spore, yeast, and hyphae. The activity levels of AP2 and AP3 decreased in hyphae entering stationary growth. CP1 (250 kDa) and CP3 (50 kDa) activities were expressed exclusively in hyphae, whereas CP2 (77 kDa) was expressed in spore, yeast, and hyphal forms. CP1 activity was most pronounced in hyphae entering stationary growth. We concluded that M. racemosus expresses a multiplicity of peptidases and that CP1 and CP3 are morphology-specific carboxypeptidases.  相似文献   

11.
12.
The ability to produce cuticle-degrading proteases to facilitate host penetration does not distinguish per se entomopathogenic fungi from saprophytes. However, adapted pathogens may produce host-protein specific enzymes in response to cues. This possibility prompted an investigation of the regulation of isoforms of the subtilisin Pr1-like proteases from five aphid-pathogenic isolates of Lecanicillium spp. Significant differences were found in substrate specificity and regulation of Pr1-like proteases between isoforms of the same isolate and between different isolates. For example, the pI 8.6 isoform from KV71 was considerably more active against aphid than locust cuticle and was induced specifically by N-acetylglucosamine (NAG). Isoform pI 9.1 from the same isolate was only produced on insect cuticle while most other isoforms were more prominent on chitin containing substrates but not induced by NAG. The ability to regulate isoforms independently may allow production at critical points in host penetration. Appearance of proteases (not subtilisins) with pI 4.2 and 4.4 only on aphid cuticle was a possible link with host specificity of KV71. The absence of C or N metabolite repression in subtilisins from KV42 is unusual for pathogen proteases and may help to account for differences in virulence strategy between aphid-pathogenic isolates of Lecanicillium longisporum (unpublished data).  相似文献   

13.
Type I signal peptidase: an overview   总被引:5,自引:0,他引:5  
The signal hypothesis suggests that proteins contain information within their amino acid sequences for protein targeting to the membrane. These distinct targeting sequences are cleaved by specific enzymes known as signal peptidases. There are various type of signal peptidases known such as type I, type II, and type IV. Type I signal peptidases are indispensable enzymes, which catalyze the cleavage of the amino-terminal signal-peptide sequences from preproteins, which are translocated across biological membranes. These enzymes belong to a novel group of serine proteases, which generally utilize a Ser-Lys or Ser-His catalytic dyad instead of the prototypical Ser-His-Asp triad. Despite having no distinct consensus sequence other than a commonly found 'Ala-X-Ala' motif preceding the cleavage site, signal sequences are recognized by type I signal peptidase with high fidelity. Type I signal peptidases have been found in bacteria, archaea, fungi, plants, and animals. In this review, I present an overview of bacterial type I signal peptidases and describe some of their properties in detail.  相似文献   

14.

Background  

Trypsin-like serine proteases are involved in a large number of processes including digestive degradation, regulation of developmental processes, yolk degradation and yolk degradome activation. Trypsin like peptidases considered to be involved in digestion have been characterized in Lepeophtheirus salmonis. During these studies a trypsin-like peptidase which differed in a number of traits were identified.  相似文献   

15.
Streptomyces violaceoruber produces two different classes of mycelium, the substrate and the aerial mycelium. Since proteases have been associated with morphological turnover processes in other Streptomyces species, the presence of excretory/secretory proteolytic activities was investigated here in S. violaceoruber culture supernatants. Various polypeptide bands, with apparent molecular masses ranging from 40 to 180 kDa, were detected in soy trypticase broth (STB) culture media supernatants following 72 h of growth, using Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Zymograms showed the presence of five proteolytic enzymes (Spvio1–5), which migrated as bands of 167.7, 130.7, 110.7, 48.3 and 40.9 kDa, respectively. The characterization of these proteases by specific inhibitors showed that Spvio1–4 belong to the serine protease group and Spvio5 corresponds to a cysteine protease. Additionally, Spvio2 and 5 were inhibited by a mixture of EDTA and EGTA, indicating that both require divalent cations. The protease pattern obtained in STB enriched with glucose was identical to that obtained in STB. However, Spvio3 and 4 were absent when nitrogen was added to the culture medium. Cell death was fluorescently detected following 72 h of S. violaceoruber growth in STB and in STB that was enriched with glucose. On the contrary, no cell death was detected in nitrogen-enriched STB media. Additionally, the formation of the aerial mycelium was impaired in solid cultures of STB media enriched with nitrogen. These results demonstrate that the composition of the media influences the morphological turnover of the colony and the pattern of excreted/secreted proteases from S. violaceoruber, and suggest that Spvio3 and 4 are involved in the aerial mycelium formation.  相似文献   

16.
Duddingtonia flagrans degrades peptides, proteins, starch, pectin, lipase, lecithin and oils when grown on agar medium. Serine proteases with optimal activity at pH 8.5 to 10.5 were produced when it was grown in submerged culture. It also produced phospholipase C with optimal activity at pH 8.5, lipases with high activity at pH 3.5 and at 7.5 to 8.5 and pectin-degrading enzymes with pH optima of 3 and 8. The pH of the culture medium affected the types of lipases and pectin degrading enzymes produced but not the proteases or phospholipase C.  相似文献   

17.
Summary Protein-extracted lucerne fiber was used as carbon and energy source for production of extracellular polygalacturonate lyase byThermomonospora curvata. The optimal fiber concentration was 1.5% (w/v); peal lyase activity in culture fluid occurred after 3 days growth at 53°C. During that time, lyase biosynthesis was controlled through induction; production was accelerated by adding small amounts of pectin or by grinding the fiber to 40-mesh particle size to release more inducer. After 3 days growth, lyase activity decreased; inactivation of the enzyme was delayed by the presence of 1 mM Ca or by inhibition of serine proteases with 0.05 mM phenylmethylsulfonyl fluoride. The molecular weight of the lyase produced during growth on the fiber was 35 kDa compared to 56 kDa for the enzyme produced on pure pectin. TheK m of the 35-kDa form was 0.54% pectin compared to 0.06% for the 56-kDa form. The smaller form was rapidly inactivated at 60°C, the optimal temperature for activity of the larger form.  相似文献   

18.
A critical step in the influenza virus replication cycle is the cleavage activation of the HA precursor. Cleavage activation of influenza HA enables fusion with the host endosome, allowing for release of the viral genome into the host cell. To date, studies have determined that HA activation is driven by trypsin-like host cell proteases, as well as yet to be identified bacterial proteases. Although the number of host proteases that can activate HA is growing, there is still uncertainty regarding which secreted proteases are able to support multicycle replication of influenza. In this study, we have determined that the kallikrein-related peptidases 5 and 12 are secreted from the human respiratory tract and have the ability to cleave and activate HA from the H1, H2, and H3 subtypes. Each peptidase appears to have a preference for particular influenza subtypes, with kallikrein 5 cleaving the H1 and H3 subtypes most efficiently and kallikrein 12 cleaving the H1 and H2 subtypes most efficiently. Cleavage analysis using HA cleavage site peptide mimics revealed that the amino acids neighboring the arginine cleavage site affect cleavage efficiency. Additionally, the thrombolytic zymogens plasminogen, urokinase, and plasma kallikrein have all been shown to cleave and activate influenza but are found circulating mainly as inactive precursors. Kallikrein 5 and kallikrein 12 were examined for their ability to activate the thrombolytic zymogens, and both resulted in activation of each zymogen, with kallikrein 12 being a more potent activator. Activation of the thrombolytic zymogens may therefore allow for both direct and indirect activation of the HA of human-adapted influenza viruses by kallikrein 5 and kallikrein 12.  相似文献   

19.
Although trypsin remains the most commonly used protease in MS, other proteases may be employed for increasing peptide coverage or generating overlapping peptides. Knowledge of the accurate specificity rules of these proteases is helpful for database search tools to detect peptides, and becomes crucial when label‐free MS is used to discover in vivo proteolytic cleavages. Since in vivo cleavages are inferred by subtracting digestion‐induced cleavages from all observed cleavages, it is important to ensure that the specificity rule used to identify digestion‐induced cleavages are broad enough to capture even minor cleavages produced in digestion, to avoid erroneously identifying them as in vivo cleavages. In this study, we describe MS‐Proteolysis, a software tool for identifying putative sites of in vivo proteolytic cleavage using label‐free MS. The tool is used in conjunction with digestion by trypsin and three other proteases, whose specificity rules are revised and extended before inferring proteolytic cleavages. Finally, we show that comparative analysis of multiple proteases can be used to detect putative in vivo proteolytic sites on a proteome‐wide scale.  相似文献   

20.
The peptidase system inDrosophila melanogaster (dipeptidase-A, -B, and -C and leucine aminopeptidases G and P) was used as a model to study the effects of modifier genes on activity of enzymes with similar functions. A screen of X, second, and third chromosome substitution isogenic lines revealed the presence of activity modifiers for peptidases on all three chromosomes. Correlation analyses indicated that covariation between some of the peptidase activities is independent of genetic background, while others are associated with variable second chromosomes. Chromosome-specific effects onK m ,V max, and specific activity of partially purified peptidases were also detected. Moreover, a repeatable technique using anion-exchange column chromatography allowed the characterization of possibly two putative peptidic enzymes, glycyl-l-isoleucine-ase andl-leucyl-l-proline-ase, whose kinetic properties differ from the dipeptidases and the leucine aminopeptidases. These findings confirm the existence of activity modifiers for peptidases, much like other enzymes inDrosophila melanogaster. These studies were supported by grants from the National Institutes of Health (GM42-115-01A1), the Whitaker Foundation of the Research Corporation (C-2560), and the National Science Foundation (USE 8951018) to Kazuo Hiraizumi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号