共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of higher plants as the basis for a biological life support system that regenerates the atmosphere, purifies water, and produces food has been proposed for long duration space missions. The objective of these experiments was to determine what effects microgravity (μg) had on chloroplast development, carbohydrate metabolism and gene expression in developing leaves of Triticum aestivum L. cv. USU Apogee. Gravity naive wheat plants were sampled from a series of seven 21-day experiments conducted during Increment IV of the International Space Station. These samples were fixed in either 3% glutaraldehyde or RNAlater™ or frozen at −25°C for subsequent analysis. In addition, leaf samples were collected from 24- and 14-day-old plants during the mission that were returned to Earth for analysis. Plants grown under identical light, temperature, relative humidity, photoperiod, CO2, and planting density were used as ground controls. At the morphological level, there was little difference in the development of cells of wheat under μg conditions. Leaves developed in μg have thinner cross-sectional area than the 1 g grown plants. Ultrastructurally, the chloroplasts of μg grown plants were more ovoid than those developed at 1 g, and the thylakoid membranes had a trend to greater packing density. No differences were observed in the starch, soluble sugar, or lignin content of the leaves grown in μg or 1 g conditions. Furthermore, no differences in gene expression were detected leaf samples collected at μg from 24-day-old leaves, suggesting that the spaceflight environment had minimal impact on wheat metabolism.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. 相似文献
2.
Near-isogenic wheat lines differing in height-reducing (Rht) alleles, in each of two cultivars, were used to investigate the effects of light intensity and of their interaction with temperature and GA3 application, on the elongation of the coleoptile and the first seedling leaf. Darkness caused a conspicuous increase in the lengths of the coleoptile and of the sheath and lamina of the first leaf, in GA3 treated and untreated seedlings of all genotypes grown at 11 and 25°C. The genotype effects and the effects of light intensity and GA3 application on leaf length were ascribed entirely to their effects on the rate of leaf elongation since the duration of leaf elongation was not affected by these factors. Temperature elevation from 11 to 25°C caused a 55% shortening of the duration of leaf elongation and a concomitant increase in elongation rate, which diminished with increased genotypic dwarfness. Accordingly, temperature elevation resulted in a significant reduction in leaf-length of the light-grown dwarf genotypes and the dark-grown dwarf and semi-dwarf genotypes. It is suggested that this temperature × light × genotype interaction effect is due to environmental dependent upper limits of elongation rate set by the Rht alleles.Abbreviations PAR
Photosynthetic Active Radiation 相似文献
3.
Previous studies have shown that short exposure of plants to high doses of ozone decreases subsequent photosynthesis; initially by reducing carboxylation capacity. This study tests the hypothesis that this is also the primary cause of loss of photosynthetic capacity in leaves affected by development under a low level of ozone. Triticum aestivum and Pisum sativum plants were exposed from germination to ozone in air (80 nmol mol-1 for 7 hours per day, for 18 days. Leaves that had completed lamina expansion at this time were free of visible injury and light absorptance was unaffected. However, some significant changes in photosynthetic gas exchange were evident. Photosynthetic CO2 uptake at light saturation was decreased significantly by 35% in T. aestivum but was unchanged in P. sativum. The reduction in photosynthesis of T. aestivum was accompanied by a 31% decline in the maximum velocity of carboxylation measured in vivo. Decreased stomatal conductance did not contribute to this reduction of photosynthesis because there was no significant change in the stomatal limitation to CO2. Processes directly dependent upon photochemical reactions; that is, the quantum yield of CO2 uptake and capacity for regeneration of ribulose 1,5-bisphosphate were not affected by O3 fumigation in either species. This suggests that for wheat, the quantitative cause of decreased photosynthetic rate in vivo is a decrease in the quantity of active ribulose-1,5- bisphosphate carboxylase-oxygenase. 相似文献
4.
The effect of repeated exposure to high light (1200 mol · m–2 · s–1 photosynthetic photon flux density, PPFD) at 5° C was examined in attached leaves of cold-grown spring (cv. Katepwa) and winter (cv. Kharkov) wheat (Triticum aestivum L.) over an eight-week period. Under these conditions, Kharkov winter wheat exhibited a daily reduction of 24% in FV/FM (the ratio of variable to maximal fluorescence in the dark-adapted state), in contrast to 41% for cold-grown Katepwa spring wheat. Both cultivars were able to recover from this daily suppression of FV/FM such that the leaves exhibited an average morning FV/FM of 0.651 ± 0.004. Fluorescence measurements made under steady-state conditions as a function of irradiance from 60 to 2000 mol · m–2 · s–1 indicated that the yield of photosystem II (PSII) electron transport under light-saturating conditions was the same for photoinhibited and control cold-grown plants, regardless of cultivar. Repeated daily exposure to high light at low temperature did not increase resistance to short-term photoinhibition, although zeaxanthin levels increased by three- to fourfold. In addition, both cultivars increased the rate of dry-matter accumulation, relative to control plants maintained at 5° C and 250 mol · m–2 · s–1 PPFD (10% and 28% for Katepwa and Kharkov, respectively), despite exhibiting suppressed fv/fm and reduced photon yields for O2 evolution following daily high-light treatments. Thus, although photosynthetic efficiency is suppressed by a longterm, photoinhibitory treatment, light-saturated rates of photosynthesis are sufficiently high during the high-light treatment to offset any reduction in photochemical efficiency of PSII. We suggest that in these cold-tolerant plants, photoinhibition of PSII may represent a longterm, stable, down-regulation of photochemistry to match the overall photosynthetic demand for ATP and reducing equivalents.Abbreviations and Symbols Chl
chlorophyll
- HL
high light
- PPFD
photosynthetic photon flux density
- FO
minimum fluorescence in the dark-adapted state
- FM
maximum fluorescence in the dark-adapted state
- FV
maximum variable fluorescence in the dark-adapted state (FM-FO)
- FV/FV
photosynthetic efficiency of the dark-adapted state
- fV/fM
photosynthetic efficiency of the light-adapted steady state
- qP
photochemical quenching parameter
- qN
non-photochemical quenching parameter
- e
yield of electron transport and equals qP · fV/fM
- 1-qO
FO quenching parameter
- app
apparent photon yield.
The assistance of Amy So is gratefully acknowledged. This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERCC) Operating Grant to N.P.A.H. G.Ö. was supported by an NSERCC International Exchange Award and the Swedish Natural Sciences Research Council. 相似文献
5.
6.
Synergistic effects of cadmium and NaCl on the growth,photosynthesis and ion content in wheat plants
The addition of NaCl to cadmium had significant synergistic effect on the wheat root and shoot fresh mass, relative growth
rate and net assimilation rate, while showed no significant effects on the dry mass production, leaf area, leaf area ratio,
leaf mass ratio and specific leaf area. Additive depression of the rate of photosynthesis and the stomatal conductance was
recorded, while no significant effect on the transpiration rate was observed. The Cd stress disturbed the mineral nutrition
of the wheat plants either directly or indirectly, NaCl markedly reduce the uptake and internal concentration of K and Ca
in the shoot. The combination of cadmium and NaCl showed no additive effects on the content of ions in the root as well as
in the shoot of wheat plants. 相似文献
7.
Gaza Salih Ronney Wiklund Taina Tyystjärvi Pirkko Mäenpää Catherine Gerez Christer Jansson 《Photosynthesis research》1996,49(2):131-140
Modified forms of the D1 protein with deletions in lumen-exposed regions, were constructed in the cyanobacterium Synechocystis 6803 using site-directed mutagenesis. Integration and stability of the mutated D1 proteins in the thylakoid membrane were studied by immunoblot and pulse-chase analyses. It was found that in (N325-E333), the D1 protein with a deletion in the C-terminal tail, could insert in the thylakoids to normal amounts but its stability in the membrane was dramatically reduced. Insertion of D1 in (V58-D61) or (D103-G109);G110R, with deletions in the A-B loop, was severely obstructed, For (P350-T354), with a deletion in the processed region of the C-terminus of D1, no phenotypic effects were observed. The effects of failed D1 insertion or accumulation on Photosystem II assembly was monitored by immunoblot analysis. The conclusions from these experiments are that the extrinsic 33 kDa protein, CP43, and the subunit of cytochrome b559 accumulate in the thylakoid membrane independently of the D1 protein, and that accumulation of the D2 protein and CP47 requires insertion but not necessarily accumulation of the D1 protein.Abbreviations PSI II
Photosystem II
- PCR
Polymerase Chain reaction
Present address: Université Joseph Fourier, Sciences Technologie Médecine, BP 53, 38041 Grenoble Cedex 9, France 相似文献
8.
Effect of drought on ear and flag leaf photosynthesis of two wheat cultivars differing in drought resistance 总被引:3,自引:0,他引:3
We investigated net photosynthetic rate (PN) of ear and two uppermost (flag and penultimate) leaves of wheat cultivars Hongmangmai (drought resistant) and Haruhikari (drought sensitive) during post-anthesis under irrigated and non-irrigated field conditions. The PNof ear and flag leaf were significantly higher and less affected by drought in Hongmangmai than in Haruhikari. The rate of reduction in stomatal conductance (gs) was similar for the two cultivars, but intercellular CO2concentration (Ci) in the flag leaf of Hongmangmai was lower than that of Haruhikari in non-irrigated treatment. No differences were observed in leaf water potential (1) and osmotic adjustment of the flag leaf of the cultivars. These results imply that differences in photosynthetic inhibition on the flag leaf at low leaf 1between the cultivars were primarily due to non-stomatal effects. Hence the main physiological factor associated with yield stability of Hongmangmai under drought stress may be attributed to the capacity for chloroplast activity in the flag leaf, which apparently allows sustained PNof flag leaf during grain filling under drought stress. The higher PNof ear in Hongmangmai under drought could also be related to its drought resistance.This revised version was published online in March 2005 with corrections to the page numbers. 相似文献
9.
The interactive effects of elevated CO2 and O3 concentration on photosynthesis in spring wheat 总被引:1,自引:0,他引:1
This study investigated the interacting effects of carbon dioxide and ozone on photosynthetic physiology in the flag leaves of spring wheat (Triticum aestivum L. cv. Wembley), at three stages of development. Plants were exposed throughout their development to reciprocal combinations of two carbon dioxide and two ozone treatments: [CO2] at 350 or 700 mol mol–1, [O3] at < 5 or 60 nmol mol–1. Gas exchange analysis, coupled spectrophotometric assay for RuBisCO activity, and SDS-PAGE, were used to examine the relative importance of pollutant effects on i) stomatal conductance, ii) quantum yield, and iii) RuBisCO activity, activation, and concentration. Independently, both elevated [CO2] and elevated [O3] caused a loss of RuBisCO protein and Vcmax. In combination, elevated [CO2] partially protected against the deleterious effects of ozone. It did this partly by reducing stomatal conductance, and thereby reducing the effective ozone dose. Elevated [O3] caused stomatal closure largely via its effect on photoassimilation. 相似文献
10.
The characteristics of photosynthetic gas exchange, chlorophyll a fluorescence, and xanthophyll cycle pigments during flag leaf senescence of field-grown wheat plants were investigated. With senescence progressing, the light-saturated net CO2 assimilation rate expressed either on a basis of leaf area or chlorophyll decreased significantly. The apparent quantum yield of net photosynthesis decreased when expressed on a leaf area basis but increased when expressed on a chlorophyll basis. The maximal efficiency of PSII photochemistry decreased very little while actual PSII efficiency, photochemical quenching, and the efficiency of excitation capture by open PSII centers decreased considerably. At the same time, non-photochemical quenching increased significantly. A substantial decrease in the contents of violaxanthin and zeaxanthin, but a slight decrease in the content of antheraxanthin were observed. However, the de-epoxidation status of the xanthophyll cycle was positively correlated with progressive senescence. This increase was due mainly to a smaller decrease in zeaxanthin than in violaxanthin. Our results suggest that PSII apparatus remained functional, but a down-regulation of PSII occurred under the steady state of photosynthesis in senescent flag leaves. Such a down-regulation was associated with the closure of PSII centers and an enhanced xanthophyll cycle-related thermal dissipation in the PSII antennae. 相似文献
11.
Mixtures and monocultures of wheat (Triticum aestivum) and wild oat (Avena fatua), a common weedy competitor of wheat, were exposed to enhanced solar UV-B radiation simulating a 20% reduction in stratospheric ozone to assess the timing and seasonal development of the UV-B effects on light competition in these species. Results from two years of field study revealed that UV-B enhancement had no detectable effect on the magnitude or timing of seedling emergence in either species. End-of-season measurements showed significant UV-B inhibition of leaf insertion height in wild oat in mixture and monoculture in the second year (irrigated year) but not in the first year (drought year). Leaf insertion height of wheat was not affected by UV-B in either year. The UV-B treatment had no detectable effect on monoculture or total (combined species) mixture LAI but did significantly increase (5–7%) the fractional contribution of wheat to the mixture LAI after four weeks of growth in both years. In addition, the UV-B treatment had subtle effects on LAI height profiles with early season mixtures showing significant reductions in wild oat LAI in lower canopy layers in both years while midseason Year 2 mixtures showed significant reductions in wild oat LAI in upper canopy layers. The changes in canopy structure were found to significantly increase (6–7%) the proportional simulated clear sky canopy photosynthesis and light interception of wheat in mixture. These findings, and others, indicate that the effects of UV-B enhancement on competition are realized very early in canopy development and provide additional support for the hypothesis that UV-B enhancement may shift the balance of competition between these species indirectly by altering competitive interactions for light. 相似文献
12.
G. Schachermayr H. Siedler M. D. Gale H. Winzeler M. Winzeler B. Keller 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1994,88(1):110-115
Near-isogenic lines (NILs) for the leaf rust resistance gene Lr9 were screened for polymorphisms at the molecular level. RAPD (random amplified polymorphic DNA) primers as well as RFLP (restriction fragment length polymorphism) markers were used. Out of 395 RAPD primers tested, three showed polymorphisms between NILs, i.e., an additional band was found in resistant lines. One of these polymorphic bands was cloned and sequenced. Specific primers were synthesized, and after amplification only resistant lines showed an amplified product. Thus, these primers define a sequence-tagged site that is specific for the translocated fragment carrying the Lr9 gene. A cross between a resistant NIL and the spelt (Triticum spelta) variety Oberkulmer was made, and F2 plants were analyzed for genetic linkage. All three polymorphisms detected by the PCR (polymerase chain reaction) and one RFLP marker (cMWG684) showed complete linkage to the Lr9 gene in 156 and 133 plants analyzed, respectively. A second RFLP marker (PSR546) was closely linked (8±2.4 cM) to the Lr9 gene and the other four DNA markers. As this marker maps to the distal part of the long arm of chromosome 6B of wheat, Lr9 and the other DNA markers also map to the distal region of 6BL. All three PCR markers detected the Lr9 gene in independently derived breeding lines and varieties, thus proving their general applicability in wheat breeding programs. 相似文献
13.
Hemming I. Virgin 《Physiologia plantarum》1987,70(2):203-208
The displacement by centrifugation of the cell contents of wheat ( Triticum aestivum L. cy. Weibull's Starke) was studied after various light treatments. In dark-grown leaves the viscosity of the cytoplasm, measured as the time necessary to displace the cell contents, is low, but increases slowly during continuous red irradiation as well as after a short red pulse. The increase after a red light pulse can be nullified by a short far-red irradiation which in itself has no effect. Unlike that found earlier for Elodea densa Casp., and verified in the present study, the cytoplasm of wheat leaves does not show any rapid response to blue light, not even after pretreatment with red light. 相似文献
14.
Effects of ozone on the photosynthetic apparatus and leaf proteins during leaf development in wheat 总被引:10,自引:4,他引:10
Leaves of Triticum aestivum cv. Avalon were grown in an atmosphere that contained 150 nmole mol-1 ozone for 7h each day. After leaves had reached maximum size, the leaf blade was divided into three sections to provide tissue of different age, the youngest at the base of the blade and the oldest at the leaf tip. The ozone treatment was found to decrease significantly the light-saturated rate and quantum yield of CO2 assimilation and the maximum quantum yield of photosystem II photochemistry in the oldest leaf section. No effects were found on the basal and middle sections of the leaf. These ozone-induced decreases in the photosynthetic parameters were associated with decreases in the efficiency of utilization of light for CO2 assimilation at the photon flux density under which the leaves were grown. The depression in photosynthetic performance of tissue near the leaf tip was accompanied by large decreases in the contents of total, soluble and thylakoid proteins and chlorophyll. There was also found to be a preferential loss of ribulose-1,5-carboxylase-oxygenase. These ozone-induced changes in chlorophyll and protein contents and the photosynthetic activities of the leaf tissue were similar to changes normally associated with leaf senescence. Two-dimensional polyacrylamide gel analyses of leaf proteins demonstrated the loss of some minor, and unidentified, proteins, whilst another group of minor proteins appeared. It is concluded that daily exposure of the leaf to 150 nmol mol-1 ozone for 7h had no effect on the development of the photosynthetic apparatus and its activities during leaf expansion, but it did promote the onset of premature senescence in fully expanded tissue that resulted in a loss of pigments, proteins and photosynthetic capacity and efficiency. 相似文献
15.
Shikonin isovalerate, extracted from the roots of the desert plant Arnebia decumbens, was tested for its effect on photosynthetic electron transport system of Chlorogloeopsis fritschii. The ferricyanide-Hill reaction with water and DPC as electron donors was inhibited completely with 10-5 M shikonin isovalerate. The photoreduction of DCPIP through photosystem II was only slightly inhibited. Photosystem I from durohydroquinone to methyl viologen was not affected using 10-6 M shikonin isovalerate. The same concentration caused 49% inhibition of cyclic photophosphorylation. These results suggest that shikonin isovalerate inhibits photosynthetic electron flow at the plastoquinone pool.Abbreviations DCMU
3-(3,4-dichlorophenyl)-N,N-dimethyl urea
- DBMIB
2,5-dibromo-3-methyl-6-isopropyl-P-benzoquinone
- DCPIP
2–6-dichlorophenolindophenol
- DPC
Diphenylcarbazide
- Tricine
N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine 相似文献
16.
A biochemical model of C
3photosynthesis has been developed by G.D. Farquhar et al. (1980, Planta 149, 78–90) based on Michaelis-Menten kinetics of ribulose-1,5-bisphosphate (RuBP) carboxylase-oxygenase, with a potential RuBP limitation imposed via the Calvin cycle and rates of electron transport. The model presented here is slightly modified so that parameters may be estimated from whole-leaf gas-exchange measurements. Carbon-dioxide response curves of net photosynthesis obtained using soybean plants (Glycine max (L.) Merr.) at four partial pressures of oxygen and five leaf temperatures are presented, and a method for estimating the kinetic parameters of RuBP carboxylase-oxygenase, as manifested in vivo, is discussed. The kinetic parameters so obtained compare well with kinetic parameters obtained in vitro, and the model fits to the measured data give r
2values ranging from 0.87 to 0.98. In addition, equations developed by J.D. Tenhunen et al. (1976, Oecologia 26, 89–100, 101–109) to describe the light and temperature responses of measured CO2-saturated photosynthetic rates are applied to data collected on soybean. Combining these equations with those describing the kinetics of RuBP carboxylase-oxygenase allows one to model successfully the interactive effects of incident irradiance, leaf temperature, CO2 and O2 on whole-leaf photosynthesis. This analytical model may become a useful tool for plant ecologists interested in comparing photosynthetic responses of different C3 plants or of a single species grown in contrasting environments.Abbreviations PCO
photorespiratory carbon oxidation
- PCR
photosynthetic carbon reduction
- PPFD
photosynthetic photon-flux density
- RuBP
ribulose bisphosphate 相似文献
17.
Riethmuller-Haage I Bastiaans L Harbinson J Kempenaar C Kropff MJ 《Photosynthesis research》2006,88(3):331-341
The influence of the acetolactate synthase inhibitor metsulfuron-methyl on the operation of the photosynthetic apparatus was examined on 4-weeks-old climate chamber-grown Solanum nigrum plant. To have an indication on the relative performance of the photosynthetic apparatus of ALS-treated plants, the level of carbon dioxide (CO2) fixation, the relative quantum efficiency of photosystem I (ΦPSI) or photosystem II (ΦPSII) electron transport and leaf chlorophyll content were assessed for both control and treated plants at 2, 4 and 7 days after application of the herbicide. Results indicated a progressive inhibition of the level of CO2 fixation, the relative quantum efficiency of photosystem I (ФPSI) and II (ФPSII) electron transport and the leaf chlorophyll content already 2 days after application of the herbicide. The linear relationship between the photosystem I and II was unaltered by herbicidal treatment and was sustained under conditions where large changes in pigment composition of the leaves occurred. It appears that the stress-induced loss of leaf chlorophyll is not a catastrophic process but rather is the consequence of a well-organised breakdown of components. Under photorespiratory and non-photorespiratory conditions, the relationship between the index of electron transport flow through photosystem I and II and the rate of CO2 fixation is altered so that electron transport becomes less efficient at driving CO2 fixation. 相似文献
18.
Cold acclimation and photoinhibition of photosynthesis in Scots pine 总被引:13,自引:0,他引:13
Alla Krivosheeva Da-Li Tao Christina Ottander Gunnar Wingsle Sylvain L. Dube Gunnar Öquist 《Planta》1996,200(3):296-305
Cold acclimation of Scots pine did not affect the susceptibility of photosynthesis to photoinhibition. Cold acclimation did however cause a suppression of the rate of CO2 uptake, and at given light and temperature conditions a larger fraction of the photosystem II reaction centres were closed in cold-acclimated than in nonacclimated pine. Therefore, when assayed at the level of photosystem II reaction centres, i.e. in relation to the degree of photosystem closure, cold acclimation caused a significant increase in resistance to photoinhibition; at given levels of photosystem II closure the resistance to photoinhibition was higher after cold acclimation. This was particularly evident in measurements at 20° C. The amounts and activities of the majority of analyzed active oxygen scavengers were higher after cold acclimation. We suggest that this increase in protective enzymes and compounds, particularly Superoxide dismutase, ascorbate peroxidase, glutathione reductase and ascorbate of the chloroplasts, enables Scots pine to avoid excessive photoinhibition of photosynthesis despite partial suppression of photosynthesis upon cold acclimation. An increased capacity for light-induced de-epoxidation of violaxanthin to zeaxanthin upon cold acclimation may also be of significance.Abbreviations APX
ascorbate peroxidase
- DHA
dehydroascorbate
- DHAR
dehydroascorbate reductase
- Fm
maximal fluorescence when all reaction centres are closed
- Fv/Fm
maximum photochemical yield of PSII
- GR
glutathione reductase
- GSH
reduced glutathione
- Je
rate of photosynthetic electron transport
- MDAR
monodehydroascorbate reductase
- qN
nonphotochemical quenching of fluorescence
- qP
photochemical quenching of fluorescence
- SOD
superoxide dismutase
This work was supported by the Swedish Natural Science Research Council and the National Natural Science Foundation of China. 相似文献
19.
20.
Two wheat cultivars, HF9703 (drought tolerant) and SN215953 (drought sensitive) were used to examine the effects of glycinebetaine
(GB, 100 mM) on lipid composition and function of thylakoid membranes under drought stress. GB application mitigated negative
effect of drought on Ca2+-ATPase and Hill reaction activities, chlorophyll content, gas exchange and photosynthesis. These positive effects of GB application
maybe, in part, correlated with improving the lipid composition of the thylakoid membranes. 相似文献