首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Yokota  H Tsuji  K Kato 《Histochemistry》1986,85(3):223-230
Light and electron microscopic localization of cathepsin H in rat kidney was studied using post-embedding immunocytochemical techniques. For light microscopy, Epon sections of the kidney were stained by immunoenzyme method after removal of Epon and for electron microscopy, ultrathin sections of the Lowicryl K4M-embedded material were labeled by protein A-gold (pAg) technique. By light microscopy, fine granular staining was found in throughout the nephron, but the staining intensity considerably varied. The strongest staining was noted in the S1 segment of the proximal tubules followed by the S2 and S3 segments and the medullary collecting tubules. The glomeruli, the distal tubules, and the cortical collecting tubules were weakly stained. By electron microscopy, a gold label was found exclusively in lysosomes, which showed various sizes and labeling intensity. The results were quite consistent with the light microscopic results. The labeling intensity tended to increase as the matrix of lysosomes was condensed. Quantitative analysis of the labeling density of lysosomes demonstrated that the highest labeling density is found in the S1 segment of the proximal tubules and the labeling density of other renal segments is significantly low levels. The results indicate that a main site for cathepsin H in rat kidney is the S1 segment of the proximal tubules.  相似文献   

2.
Immunocytochemical localization of cathepsin H in rat kidney   总被引:1,自引:1,他引:0  
Summary Light and electron microscopic localization of cathepsin H in rat kidney was studied using post-embedding immunocytochemical techniques. For ligh microscopy, Epon sections of the kidney were stained by immunoenzyme method after removal of Epon and for electron microscopy, ultrathin sections of the Lowicryl K4M-embedded material were labeled by protein A-gold (pAg) technique. By light microscopy, fine granular staining was found in throughout the nephron, but the staining intensity considerably varied. The strongest staining was noted in the S1 segment of the proximal tubules followed by the S2 and S3 segments and the medullary collecting tubules. The glomeruli, the distal tubules, and the cortical collecting tubules were weakly stained. By electron microscopy, a gold label was found exclusively in lysosomes, which showed various sizes and labeling intensity. The results were quite consistent with the light microscopic results. The labeling intensity tended to increase as the matrix of lysosomes was condensed. Quantitative analysis of the labeling density of lysosomes demonstrated that the highest labeling density is found in the S1 segment of the proximal tubules and the labeling density of other renal segments is significantly low levels. The results indicate that a main site for cathepsin H in rat kidney is the S1 segment of the proximal tubules.  相似文献   

3.
The protein A-gold technique is amongst the most useful labeling techniques available for light and electron microscopic immunolabeling. Some electron microscopic studies, however, have suggested that protein A-gold, and other protein-gold complexes as well, may bind non-specifically to certain tissue structures, particularly in skin, creating a specious pattern of labeling. We utilized the protein A-gold technique with antiserum to both involucrin and keratin under a variety of conditions to document the specificity of labeling. When the standard conditions were followed, the protein A-gold technique produces highly specific results. These conditions include: 1. the blocking of unreacted aldehyde groups by amination; 2. the blocking of non-specific binding sites on tissue sections by preincubation with inert proteins; and 3. the use of proper concentration of the protein A-gold complex. However, non-specific labeling could be produced if the three components of the standard protocol were omitted. In particular, the use of too concentrated protein A-gold lead to non-specific labeling. We report here also updated working protocols for antigen detection with protein A-gold on semithin Lowicryl K4M and paraffin sections which provide optimal staining results.  相似文献   

4.
Summary The light- and electron-microscopic localization of serine:pyruvate aminotransferase (SPT) in rat kidney was studied using immunoenzyme and protein A-gold techniques. Rat kidneys were fixed by perfusion through the abdominal aorta and small tissue slices were embedded in Epon, Lowicryl K4M, or LR Gold. The Epon was removed from the semithin sections, which were then stained using the immunoenzyme technique. Ultrathin sections of Lowicryl K4M- or LR gold-embedded materials were labeled using the protein A-gold technique. At light microscopy, discrete granular reaction deposits were exclusively present in the proximal tubule, all of whose segments were positive for SPT. A weakly positive reaction was observed in the distal tubules. At electron microscopy, gold particles indicating the antigenic sites for SPT were confined to the peroxisomes and mitochondria. The labeling intensity of both organelles was dependent on the embedding resins used. The labeling of Lowicryl K4M-embedded material was weaker than that of LR gold-embedded material; Quantitative analysis confirmed this result. Our results indicate that, in rat kidney, the main intracellular sites for SPT are peroxisomes and mitochondria of the proximal tubule.  相似文献   

5.
S Yokota  T Oda 《Histochemistry》1985,83(1):81-85
The light- and electron-microscopic localization of serine: pyruvate aminotransferase (SPT) in rat kidney was studied using immunoenzyme and protein A-gold techniques. Rat kidneys were fixed by perfusion through the abdominal aorta and small tissue slices were embedded in Epon, Lowicryl K4M, or LR Gold. The Epon was removed from the semithin sections, which were then stained using the immunoenzyme technique. Ultrathin sections of Lowicryl K4M- or LR gold-embedded materials were labeled using the protein A-gold technique. At light microscopy, discrete granular reaction deposits were exclusively present in the proximal tubule, all of whose segments were positive for SPT. A weakly positive reaction was observed in the distal tubules. At electron microscopy, gold particles indicating the antigenic sites for SPT were confined to the peroxisomes and mitochondria. The labeling intensity of both organelles was dependent on the embedding resins used. The labeling of Lowicryl K4M-embedded material was weaker than that of LR gold-embedded material; Quantitative analysis confirmed this result. Our results indicate that, in rat kidney, the main intracellular sites for SPT are peroxisomes and mitochondria of the proximal tubule.  相似文献   

6.
Summary The protein A-gold technique is amongst the most useful labeling techniques available for light and electron microscopic immunolabeling. Some electron microscopic studies, however, have suggested that protein A-gold, and other protein-gold complexes as well, may bind non-specifically to certain tissue structures, particularly in skin, creating a specious pattern of labeling.We utilized the protein A-gold technique with antiserum to both involucrin and keratin under a variety of conditions to document the specificity of labeling. When the standard conditions were followed, the protein A-gold technique produces highly specific results. These conditions include: 1. the blocking of unreacted aldehyde groups by amination; 2. the blocking of non-specific binding sites on tissue sections by preincubation with inert proteins; and 3. the use of proper concentration of the protein A-gold complex. However, non-specific labeling could be produced if the three components of the standard protocol were omitted. In particular, the use of too concentrated protein A-gold lead to non-specific labeling.We report here also updated working protocols for antigen detection with protein A-gold on semithin Lowicryl K4M and paraffin sections which provide optimal staining results.Part of this work was presented at the 17th World Congress of Dermatology, Berlin (West), May 24–29, 1987  相似文献   

7.
Immunocytochemical localization of cathepsins B and H in rat liver   总被引:1,自引:0,他引:1  
Summary Light and electron microscopic localization of cathepsins B and H in rat liver was investigated by immunoenzyme and protein A-gold techniques. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultrathin sections of the Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsins B and H were present in the cytoplasmic granules of parenchymal cells and endothelial cells, and Kupffer cells. The sinus-lining cells and the parenchymal cells showed the similar staining intensity. By EM, gold particles were present exclusively in lysosomes of all the cell types cited above. The same results were obtained from quantitative analysis. In addition, Golgi complexes themselves were mostly negative but some small vesicles on the trans side of them were labeled for these proteinases. The results indicate that cathepsins B and H are present in the lysosomes of rat liver and that these enzymes seem to be transported by small vesicles from endoplasmic reticulum to lysosomes via tubuloreticular network of the trans Golgi region.  相似文献   

8.
S Yokota  K Kato 《Histochemistry》1987,88(1):97-103
Light and electron microscopic localization of cathepsins B and H in rat liver was investigated by immunoenzyme and protein A-gold techniques. For light microscopy (LM), semi-thin sections of the Epon-embedded material were stained by the immunoenzyme technique after removal of epoxy resin. For electron microscopy (EM), ultra-thin sections of the Lowicryl K4M-embedded material were stained by the protein A-gold technique. By LM, reaction deposits for cathepsins B and H were present in the cytoplasmic granules of parenchymal cells and endothelial cells, and Kupffer cells. The sinus-lining cells and the parenchymal cells showed the similar staining intensity. By EM, gold particles were present exclusively in lysosomes of all the cell types cited above. The same results were obtained from quantitative analysis. In addition, Golgi complexes themselves were mostly negative but some small vesicles on the trans side of them were labeled for these proteinases. The results indicate that cathepsins B and H are present in the lysosomes of rat liver and that these enzymes seem to be transported by small vesicles from endoplasmic reticulum to lysosomes via tubuloreticular network of the trans Golgi region.  相似文献   

9.
Localization of 3, 2-enoyl-CoA isomerase (ECI) and NADPH-dependent-2,4-dienoyl-CoA reductase (DCR) in the rat kidney was investigated by immunocytochemical techniques. The kidneys were perfusion-fixed and embedded in Epon or LR White. For light microscopy, semi-thin sections of Epon-embedded materials were stained by the immunoenzyme technique after the epoxy resin was removed by treatment with sodium ethoxide. For electron microscopy, ultra-thin sections of LR White-embedded materials were stained by the protein A-gold technique. By light microscopy, the S1 segment of the proximal tubule was most heavily stained for ECI and DCR whilst S2 and S3 segments showed intermediate staining. A weak staining reaction was observed in the distal tubule and the medullary collecting tubule. In the cortical collecting tubule, heavily stained cells were present between weakly stained cells. By electron microscopy, gold particles showing the antigenic sites for ECI were confined mainly to the mitochondria, but few particles were observed in the peroxisomes. Gold labeling for DCR was localized both in the mitochondria and the peroxisomes. The labeling intensity of the peroxisomes was much higher than that of the mitochondria. The results suggest that metabolism of unsaturated fatty acids occurs mainly in the mitochondria and the peroxisomes of the proximal tubule in the kidney.  相似文献   

10.
Localization of acid phosphatase (ACPase) in rat liver was investigated by immunocytochemical techniques. Rat liver was fixed by perfusion and cut into thick tissue slices, which were embedded in Epon or Lowicryl K4M. For light microscopy (LM), semithin Epon sections were stained for the enzyme ACPase by an indirect immunoenzyme technique. For electron microscopy (EM), ultra-thin Lowicryl K4M sections were stained by a protein A-gold technique. By means of LM, granular reaction deposits were observed in hepatocytes and sinus-lining cells. Stained granules were present in the juxtanuclear cytoplasm, but they did not correspond to a typical staining pattern for the Golgi complex. EM revealed that gold particles indicating ACPase antigens were present on lysosomes and on some vesicles locating in the trans Golgi region. Endosomelike vesicles were strongly positive for the labeling. Golgi cisterna were mostly negative, but weak signals were noted in dilated sacules. The plasma membranes on the sinusoidal and bile canalicular sides were labeled by a few gold particles. The results indicate that ACPase is present in endosomes and in a restricted area of plasma membrane, as well as in the lysosomal system.  相似文献   

11.
Peroxisomes are particularly abundant in the proximal tubules of the mammalian kidney. We describe the immunocytochemical localization of catalase and three peroxisomal lipid beta-oxidation enzymes: acyl-CoA oxidase, bifunctional protein (enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase) and 3-ketoacyl-CoA thiolase, in human renal biopsies fixed with glutaraldehyde and embedded in Epon. For light microscopy of semithin sections, satisfactory immunostaining required removal of the resin and controlled proteolytic digestion followed by the indirect immunoperoxidase technique. Brief etching of ultrathin sections with alkoxide followed by the protein A-gold method were used for electron microscopic localization of the enzymes. The immunoreactive peroxisomes were distinctly visualized in proximal tubular epithelial cells with no staining of any other cell organelles. The results establish the presence of catalase and of peroxisomal lipid beta-oxidation system proteins in human kidney. The immunocytochemical procedure described herein provides a simple approach for the investigation of peroxisomal structure and function in human renal biopsies processed for ultrastructural studies.  相似文献   

12.
We report on the immunohistochemical demonstration of an enzyme at the electron microscopic level using specimens processed by rapid freezing and the freeze-substitution technique without the use of any chemical fixatives. Fresh rat liver tissue blocks were rapidly frozen by the metal contact method using liquid nitrogen, and were freeze-substituted with acetone without any chemical fixatives at -80 degrees C. Some of the freeze-substituted tissues were embedded in Lowicryl K4M at -20 degrees C; the others were returned to room temperature and embedded in Epok 812 at 60 degrees C. Ultra-thin sections were stained using anti-peroxisomal catalase antibody by the protein A-gold technique. The ultrastructure of the hepatocytes was very well preserved compared with that of conventionally processed tissues. The labeling for catalase was confined to peroxisomes. When the labeling density was compared among freeze-substituted tissues and conventionally processed tissues, that of freeze-substituted and Lowicryl K4M-embedded tissues was the most intense. These results show the usefulness of freeze-substituted tissues for immunohistochemical analysis of cell organelles.  相似文献   

13.
The feasibility of light microscopic post-embedding immunocytochemistry for morphometry of peroxisomes using automatic image analysis was investigated and compared with the classical alkaline DAB method. Perfusion-fixed rat liver tissue was either embedded in LR White or incubated in the alkaline diaminobenzidine (DAB) medium for cytochemical visualization of catalase. Sections from the LR White-embedded material were incubated with a monospecific antibody against catalase, followed by protein A-gold and silver intensification. Determination of peroxisomal volume density in sections of different thickness revealed that the values increased with section thickness in DAB-stained sections but were unaffected in immunostained preparations. Moreover, the absolute value for volume density of peroxisomes, as determined by light microscopy in immunostained sections, was quite close to the value obtained by analysis of electron microscopic preparations. Finally, morphometric analysis of bezafibrate-induced peroxisome proliferation revealed that the ratio of proliferation obtained by light microscopy in immunostained sections was very close to the results obtained by electron microscopic morphometry. The main advantage of post-embedding immunostaining for light microscopic morphometry is that it restricts the immunocytochemical reaction product to the surface of the section, thus making it independent of section thickness.  相似文献   

14.
The protein A-gold immunocytochemical technique has been modified to allow labeling of cellular antigenic sites on osmium-fixed or postfixed tissues. Several strong oxidizing agents have been found able to restore protein antigenicity on osmicated tissue thin sections. According to the fine structural preservation and intensities of labeling, pretreatment with sodium metaperiodate gave optimal results. Pancreatic secretory proteins (and/or proproteins) as well as insulin (and/or proinsulin) were localized over perfectly preserved rough endoplasmic reticulum (rER), Golgi apparatus, and secretory granules of the corresponding pancreatic cells; carbamyl phosphate synthetase and catalase were revealed over liver mitochondria and peroxisomes, respectively. In addition to the higher resolution in the labeling obtained using osmium-fixed tissues, the present modification confers an additional advantage to the protein A-gold technique by allowing labeling on tissues processed for routine electron microscopy.  相似文献   

15.
S Yokota  K Asayama 《Histochemistry》1990,93(3):287-293
We have investigated the change of catalase activity in the homogenates of rat cardiac and skeletal muscles. After 7 days' starvation, the catalase activity of heart increased about 3-fold and that of soleus muscle enhanced 2-fold higher than that of control rats. Immunoblot analysis of catalase showed a single band in the homogenates of cardiac and soleus muscles and increase of catalase antigen after starvation. Light microscopic immunoenzyme staining showed that after starvation catalase positive granules markedly increased in both the cardiac and soleus muscle. Quantitative analysis of the staining showed that number of the granules per 100 microns 2 of tissue section was about 1.4-fold in the soleus muscle and 1.7-fold in the cardiac muscle after starvation. By electron microscopy of alkaline DAB staining, we confirmed that the granules were peroxisomes, which increased in both number and size. Furthermore, we stained the peroxisomes for catalase by a protein A-gold technique. Labeling density (gold particles/micron 2) of the cardiac and soleus muscles from the starved rat increased approximately 1.4 times as much as that of normal animal. When the numerical density is multiplied by the labeling density, the values are largely consistent with the enhancement of catalase activity. These results show that increase in the catalase activity of the muscle tissue after starvation is caused by increase in number and size of peroxisomes.  相似文献   

16.
The classification of amyloidosis depends on the chemical nature of the specific amyloid protein involved. Because AL amyloid protein consists mainly of variable regions of light chain (LC), immunohistochemical staining with conventional anti-LC antisera cannot identify its protein. We were able to classify three cases of AL amyloidosis, including one case of AL-kappa LC and two cases of AL-lambda LC, using post-embedding protein A-gold immunoelectron microscopy on autopsy-derived tissues. We describe here our procedure in which a protein A-gold staining apparatus was used. The main advantage of this method is that many sections can be stained and washed simultaneously under the same conditions. These results suggest that the post-embedding protein A-gold technique using conventional kappa or lambda LC may be useful in diagnosing AL amyloidosis.  相似文献   

17.
We investigated light and electron microscopic localization of ornithine transcarbamylase (OTC) in rat intestinal mucosa. In the immunoblotting assay of OTC-related protein, a single protein band with a molecular weight of about 36,500 is observed in extracts of liver and small intestinal mucosa but is not observed in those of stomach and large intestine. For light microscopy, tissue slices of the digestive system were embedded in Epon and stained by using anti-bovine OTC rabbit IgG and the immunoenzyme technique. For electron microscopy, slices of these and the liver tissues were embedded in Lowicryl K4M and stained by the protein A-gold technique. By light microscopy, the absorptive epithelial cells of duodenum, jejunum, and ileum stained positively for OTC, but stomach, large intestine, rectum, and propria mucosa of small intestine were not stained. Electron microscopy showed that gold particles representing the antigenic sites for OTC were confined to the mitochondrial matrix of hepatocytes and small intestinal epithelial cells. However, the enzyme was detected in mitochondria of neither liver endothelial cells, submucosal cells of small intestine, nor large intestinal epithelial cells. Labeling density of mitochondria in the absorptive epithelial cells of duodenum, jejunum, and ileum was about half of that in liver cells.  相似文献   

18.
S Yokota  H Tsuji  K Kato 《Histochemistry》1985,82(2):141-148
Light and electron microscopic localization of cathepsin D in rat liver was investigated by post-embedding immunoenzyme and protein A-gold techniques. By light microscopy, cytoplasmic granules of parenchymal cells and Kupffer cells were stained for cathepsin D. Weak staining was also noted in sinusoidal endothelial cells. In the parenchymal cells many of positive granules located around bile canaliculi. In the Kupffer cells and the endothelial cells, diffuse staining was noted in the cytoplasm in addition to granular staining. By electron microscopy, gold particles representing the antigenic sites for cathepsin D were seen in typical secondary lysosomes and some multivesicular bodies of the parenchymal cells and Kupffer cells. The lysosomes of the endothelial cells and fat-storing cells were weakly labeled. Quantitative analysis of the labeling density in the lysosomes of these three types of cells demonstrated that the lysosomes of parenchymal cells and Kupffer cells are main containers of cathepsin D in rat liver. The results suggest that cathepsin D functions in the intracellular digestive system of parenchymal cells and Kupffer cells but not so much in that of the endothelial cells.  相似文献   

19.
Summary Light and electron microscopic localization of cathepsin D in rat liver was investigated by post-embedding immunoenzyme and protein A-gold techniques. By light microscopy, cytoplasmic granules of parenchymal cells and Kupffer cells were stained for cathepsin D. Weak staining was also noted in sinusoidal endothelial cells. In the parenchymal cells many of positive granules located around bile canaliculi. In the Kupffer cells and the endothelial cells, diffuse staining was noted in the cytoplasm in addition to granular staining. By electron microscopy, gold particles representing the antigenic sites for cathepsin D were seen in typical secondary lysosomes and some multivesicular bodies of the parenchymal cells and Kupffer cells. The lysosomes of the endothelial cells and fat-storing cells were weakly labeled. Quantitative analysis of the labeling density in the lysosomes of these three types of cells demonstrated that the lysosomes of parenchymal cells and Kupffer cells are main containers of cathepsin D in rat liver. The results suggest that cathepsin D functions in the intracellular digestive system of parenchymal cells and Kupffer cells but not so much in that of the endothelial cells.  相似文献   

20.
Summary The localization of serine:pyruvate aminotransferase (SPT) in human liver was investigated by indirect immunoenzyme and protein A-gold techniques. By light microscopy, diaminobenzidine reaction product was present in cytoplasmic granules of the parenchymal cells. By electron microscopy, gold particles indicating the antigenic sites for SPT were exclusively confined to peroxisomes but not to mitochondria. By double labeling technique, both peroxisomal marker enzyme, catalase and SPT were detected in the same peroxisomes. Quantitative analysis of the labeling density showed that SPT is contained only in peroxisomes. The results indicate that in human liver most of SPT is contained in the peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号