首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A nonaheme cytochrome c was purified to homogeneity from the soluble and the membrane fractions of the sulfate-reducing bacterium Desulfovibrio desulfuricans Essex. The gene encoding for the protein was cloned and sequenced. The primary structure of the multiheme protein was highly homologous to that of the nonaheme cytochrome c from D. desulfuricans ATCC 27774 and to that of the 16-heme HmcA protein from Desulfovibrio vulgaris Hildenborough. The analysis of the sequence downstream of the gene encoding for the nonaheme cytochrome c from D. desulfuricans Essex revealed an open reading frame encoding for an HmcB homologue. This operon structure indicated the presence of an Hmc complex in D. desulfuricans Essex, with the nonaheme cytochrome c replacing the 16-heme HmcA protein found in D. vulgaris. The molecular and spectroscopic parameters of nonaheme cytochrome c from D. desulfuricans Essex in the oxidized and reduced states were analyzed. Upon reduction, the pI of the protein changed significantly from 8.25 to 5.0 when going from the Fe(III) to the Fe(II) state. Such redox-induced changes in pI have not been reported for cytochromes thus far; most likely they are the result of a conformational rearrangement of the protein structure, which was confirmed by CD spectroscopy. The reactivity of the nonaheme cytochrome c toward [Ni,Fe] hydrogenase was compared with that of the tetraheme cytochrome c(3); both the cytochrome c(3) and the periplasmic [Ni,Fe] hydrogenase originated from D. desulfuricans Essex. The nonaheme protein displayed an affinity and reactivity toward [Ni,Fe] hydrogenase [K(M) = 20.5 +/- 0.9 microM; v(max) = 660 +/- 20 nmol of reduced cytochrome min(-1) (nmol of hydrogenase)(-1)] similar to that of cytochrome c(3) [K(M) = 12.6 +/- 0.7 microM; v(max) = 790 +/- 30 nmol of reduced cytochrome min(-1) (nmol of hydrogenase)(-1)]. This shows that nonaheme cytochrome c is a competent physiological electron acceptor for [Ni,Fe] hydrogenase.  相似文献   

2.
Cytochrome c3 isolated from a sulfate-reducing bacterium, Desulfovibrio vulgaris Miyazaki F, is a tetraheme protein. Its physiological partner, [NiFe] hydrogenase, catalyzes the reversible oxidoreduction of molecular hydrogen. To elucidate the mechanism of electron transfer between cytochrome c3 and [NiFe] hydrogenase, the transient complex formation by these proteins was investigated by means of NMR. All NH signals of uniformly 15N-labeled ferric cytochrome c3 except N-terminus, Pro, and Gly73 were assigned. 1H-15N HSQC spectra were recorded for 15N-labeled ferric and ferrous cytochrome c3, in the absence and presence of hydrogenase. Chemical shift perturbations were observed in the region around heme 4 in both oxidation states. Additionally, the region between hemes 1 and 3 in ferrous cytochrome c3 was affected in the presence of hydrogenase, suggesting that the mode of interaction is different in each redox state. Heme 3 is probably the electron gate for ferrous cytochrome c3. To investigate the transient complex of cytochrome c3 and hydrogenase in detail, modeling of the complex was performed for the oxidized proteins using a docking program, ZDOCK 2.3, and NMR data. Furthermore, the roles of lysine residues of cytochrome c3 in the interaction with hydrogenase were investigated by site-directed mutagenesis. When the lysine residues around heme 4 were replaced by an uncharged residue, methionine, one by one, the Km of the electron-transfer kinetics increased. The results showed that the positive charges of Lys60, Lys72, Lys95, and Lys101 around heme 4 are important for formation of the transient complex with [NiFe] hydrogenase in the initial stage of the cytochrome c3 reduction. This finding is consistent with the most possible structure of the transient complex obtained by modeling.  相似文献   

3.
Sulfate-reducing bacteria, like Desulfovibrio vulgaris Hildenborough, have developed a set of reactions allowing them to survive in oxic environments and even to reduce molecular oxygen to water. D. vulgaris contains a cytoplasmic superoxide reductase (SOR) and a periplasmic superoxide dismutase (SOD) involved in the elimination of superoxide anions. To assign the function of SOD, the periplasmic [Fe] hydrogenase activity was followed in both wild-type and sod deletant strains. This activity was lower in the strain lacking the SOD than in the wild-type when the cells were exposed to oxygen for a short time. The periplasmic SOD is thus involved in the protection of sensitive iron-sulfur-containing enzyme against superoxide-induced damages. Surprisingly, production of the periplasmic [Fe] hydrogenase was higher in the cells exposed to oxygen than in those kept in anaerobic conditions. A similar increase in the amount of [Fe] hydrogenase was observed when an increase in the redox potential was induced by addition of chromate. Viability of the strain lacking the gene encoding [Fe] hydrogenase after exposure to oxygen for 1 h was lower than that of the wild-type. These data reveal for the first time that production of the periplasmic [Fe] hydrogenase is up-regulated in response to an oxidative stress. A new function of the periplasmic [Fe] hydrogenase in the protective mechanisms of D. vulgaris Hildenborough toward an oxidative stress is proposed.  相似文献   

4.
The properties of the periplasmic hydrogenase from Desulfovibrio desulfuricans ATCC 7757, previously reported to be a single-subunit protein [Glick, B. R., Martin, W. G., and Martin, S. M. (1980) Can. J. Microbiol. 26, 1214-1223] were reinvestigated. The pure enzyme exhibited a molecular mass of 53.5 kDa as measured by analytical ultracentrifugation and was found to comprise two different subunits of 42.5 kDa and 11 kDa, with serine and alanine as N-terminal residues, respectively. The N-terminal amino acid sequences of its large and small subunits, determined up to 25 residues, were identical to those of the Desulfovibrio vulgaris Hildenborough [Fe]-hydrogenase. D. desulfuricans ATCC 7757 hydrogenase was free of nickel and contained 14.0 atoms of iron and 14.4 atoms of acid-labile sulfur/molecule and had E400, 52.5 mM-1.cm-1. The purified hydrogenase showed a specific activity of 62 kU/mg of protein in the H2-uptake assay, and the H2-uptake activity was higher than H2-evolution activity. The enzyme isolated under aerobic conditions required incubation under reducing conditions to express its maximum activity both in the H2-uptake and 2H2/1H2 exchange reaction. The ratio of the activity of activated to as-isolated hydrogenase was approximately 3. EPR studies allowed the identification of two ferredoxin-type [4Fe-4S]1+ clusters in hydrogenase samples reduced by hydrogen. In addition, an atypical cluster exhibiting a rhombic signal (g values 2.10, 2.038, 1.994) assigned to the H2-activating site in other [Fe]-hydrogenases was detected in partially reduced samples. Molecular properties, EPR spectroscopy, catalytic activities with different substrates and sensitivity to hydrogenase inhibitors indicated that D. desulfuricans ATCC 7757 periplasmic hydrogenase is a [Fe]-hydrogenase, similar in most respects to the well characterized [Fe]-hydrogenase from D. vulgaris Hildenborough.  相似文献   

5.
 A comparative study of electron transfer between the 16 heme high molecular mass cytochrome (Hmc) from Desulfovibrio vulgaris Hildenborough and the [Fe] and [NiFe] hydrogenases from the same organism was carried out, both in the presence and in the absence of catalytic amounts of cytochrome c 3. For comparison, this study was repeated with the [NiFe] hydrogenase from D. gigas. Hmc is very slowly reduced by the [Fe] hydrogenase, but faster by either of the two [NiFe] hydrogenases. In the presence of cytochrome c 3, in equimolar amounts to the hydrogenases, the rates of electron transfer are significantly increased and are similar for the three hydrogenases. The results obtained indicate that the reduction of Hmc by the [Fe] or [NiFe] hydrogenases is most likely mediated by cytochrome c 3. A similar study with D. vulgaris Hildenborough cytochrome c 553 shows that, in contrast, this cytochrome is reduced faster by the [Fe] hydrogenase than by the [NiFe] hydrogenases. However, although catalytic amounts of cytochrome c 3 have no effect in the reduction by the [Fe] hydrogenase, it significantly increases the rate of reduction by the [NiFe] hydrogenases. Received: 14 April 1998 / Accepted: 25 June 1998  相似文献   

6.
A hydrogenase operon was cloned from chromosomal DNA isolated from Desulfovibrio vulgaris Miyazaki F with the use of probes derived from the genes encoding [NiFe] hydrogenase from Desulfovibrio vulgaris Hildenborough. The nucleic acid sequence of the cloned DNA indicates this hydrogenase to be a two-subunit enzyme: the gene for the small subunit (267 residues; molecular mass = 28763 Da) precedes that for the large subunit (566 residues; molecular mass = 62495 Da), as in other [NiFe] and [NiFeSe] hydrogenase operons. The amino acid sequences of the small and large subunits of the Miyazaki hydrogenase share 80% homology with those of the [NiFe] hydrogenase from Desulfovibrio gigas. Fourteen cysteine residues, ten in the small and four in the large subunit, which are thought to co-ordinate the iron-sulphur clusters and the active-site nickel in [NiFe] hydrogenases, are found to be conserved in the Miyazaki hydrogenase. The subunit molecular masses and amino acid composition derived from the gene sequence are very similar to the data reported for the periplasmic, membrane-bound hydrogenase isolated by Yagi and coworkers, suggesting that this hydrogenase belongs to the general class of [NiFe] hydrogenases, despite its low nickel content and apparently anomalous spectral properties.  相似文献   

7.
hydA and hydB, the genes encoding the large (46-kDa) and small (13. 5-kDa) subunits of the periplasmic [Fe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757, have been cloned and sequenced. The deduced amino acid sequence of the genes product showed complete identity to the sequence of the well-characterized [Fe] hydrogenase from the closely related species Desulfovibrio vulgaris Hildenborough (G. Voordouw and S. Brenner, Eur. J. Biochem. 148:515-520, 1985). The data show that in addition to the well-known signal peptide preceding the NH2 terminus of the mature small subunit, the large subunit undergoes a carboxy-terminal processing involving the cleavage of a peptide of 24 residues, in agreement with the recently reported data on the three-dimensional structure of the enzyme (Y. Nicolet, C. Piras, P. Legrand, E. C. Hatchikian, and J. C. Fontecilla-Camps, Structure 7:13-23, 1999). We suggest that this C-terminal processing is involved in the export of the protein to the periplasm.  相似文献   

8.
The active site of [NiFe] hydrogenase from Desulfovibrio species is composed of a binuclear Ni-Fe complex bearing three diatomic nonprotein ligands to Fe and three bridges between the two metals, two of which are thiolate side chains of the protein moiety. The third bridging atom in the enzyme isolated from D. vulgaris Miyazaki F was suggested to be sulfur species, but was suggested to be oxygen species in D. gigas enzyme. When the hydrogenase from D. vulgaris Miyazaki F was incubated under the atmosphere of H2, H2S was liberated from the enzyme only in the presence of its electron carrier, cytochrome c3 or methylviologen. The amount of H2S liberation was little in the absence of electron carrier or essentially null when the enzyme was incubated under N2. The amount of H2S liberated was about 37% of the hydrogenase contained in the reaction vial in molar basis. These observations are in agreement with the recent observation that the third bridging site at the Ni-Fe active site is vacant in the reduced form of the enzyme revealed by X-ray crystallography.  相似文献   

9.
Hydrogenases from Desulfovibrio are found to catalyze hydrogen uptake with low potential multiheme cytochromes, such as cytochrome c3, acting as acceptors. The production of Fe-only hydrogenase from Desulfovibrio vulgaris Hildenborough was improved with respect to the growth phase and media to determine the best large-scale bacteria growth conditions. The interaction and electron transfer from Fe-only hydrogenase to multiheme cytochrome has been studied in detail by both BIAcore and steady-state measurements. The electron transfer between [Fe] hydrogenase and cytochrome c3 appears to be a cooperative phenomenon (h = 1.37). This behavior could be related to the conductivity properties of multihemic cytochromes. An apparent dissociation constant was determined (2 × 10-7 M). The importance of the cooperativity for contrasting models proposed to describe the functional role of the hydrogenase/cytochrome c3 complex is discussed. Presently, the only determined structure is from [NiFe] hydrogenase and there are no obvious similarities between [NiFe] and [Fe] hydrogenase. Furthermore, no crystallographic data are available concerning [Fe] hydrogenase. The first results on crystallization and X-ray crystallography are reported. Proteins 33:590–600, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
BACKGROUND: The active site of [NiFe] hydrogenase, a heterodimeric protein, is suggested to be a binuclear Ni-Fe complex having three diatomic ligands to the Fe atom and three bridging ligands between the Fe and Ni atoms in the oxidized form of the enzyme. Two of the bridging ligands are thiolate sidechains of cysteinyl residues of the large subunit, but the third bridging ligand was assigned as a non-protein monatomic sulfur species in Desulfovibrio vulgaris Miyazaki F hydrogenase. RESULTS: The X-ray crystal structure of the reduced form of D. vulgaris Miyazaki F [NiFe] hydrogenase has been solved at 1.4 A resolution and refined to a crystallographic R factor of 21.8%. The overall structure is very similar to that of the oxidized form, with the exception that the third monatomic bridge observed at the Ni-Fe site in the oxidized enzyme is absent, leaving this site unoccupied in the reduced form. CONCLUSIONS: The unusual ligand structure found in the oxidized form of D. vulgaris Miyazaki F [NiFe] hydrogenase was confirmed in the reduced form of the enzyme, with the exception that the electron density assigned to the monatomic sulfur bridge had almost disappeared. On the basis of this finding, as well as the observation that H2S is liberated from the oxidized enzyme under an atmosphere of H2 in the presence of its electron carrier, it was postulated that the monatomic sulfur bridge must be removed for the enzyme to be activated. A possible mechanism for the catalytic action of the hydrogenase is proposed.  相似文献   

11.
Desulfovibrio vulgaris Hildenborough has a membrane-bound [NiFeSe] hydrogenase whose mode of membrane association was unknown since it is constituted by two hydrophilic subunits. This work shows that this hydrogenase is a bacterial lipoprotein bound to the membrane by lipidic groups found at the N-terminus of the large subunit, which is unusual since it is missing the typical lipoprotein signal peptide. Nevertheless, the large subunit has a conserved four residue lipobox and its synthesis is sensitive to the signal peptidase II inhibitor globomycin. The D. vulgaris [NiFeSe] hydrogenase is the first example of a bacterial lipoprotein translocated through the Tat pathway.  相似文献   

12.
HydE, HydF, and HydG participate in the synthesis of the complex di-iron center of [FeFe] hydrogenases. The hydE, hydF, hydG, hydA, and hydB genes of Desulfovibrio vulgaris Hildenborough were cloned and His-tag pull-down assays were used to study the potential interaction between HydE, HydF, and HydG with the HydA and HydB protein subunits of the D. vulgaris [FeFe] hydrogenase. Interaction of HydE and HydG with HydA was demonstrated. HydF did not interact with HydA, and none of the accessory proteins appeared to interact with HydB. This suggests that specific protein-protein interactions may be required during [FeFe] cluster synthesis and/or insertion.  相似文献   

13.
Fichtner C  Laurich C  Bothe E  Lubitz W 《Biochemistry》2006,45(32):9706-9716
The active site in the [NiFe] hydrogenase of Desulfovibrio vulgaris Miyazaki F has been investigated by Fourier transform infrared (FTIR) spectroscopy. Analysis of the spectra allowed the three diatomic inorganic ligands to Fe in this enzyme to be identified as one CO molecule and two CN(-) molecules. Furthermore, pH-dependent redox titrations were performed to determine the midpoint potentials as well as the pK value of the respective reactions and revealed that each single-electron redox transition is accompanied by a single-proton transfer step. The comparison of these spectra with those published for other [NiFe] hydrogenases shows that the electronic structure of the active sites of these enzymes and their redox processes are essentially the same. Nevertheless, differences with respect to the frequency of the CO band and the pH dependence of the Ni-R states have been observed. Finally, the frequency shifts of the bands in the IR spectra were interpreted with respect to the electronic configuration of the redox intermediates in the catalytic cycle.  相似文献   

14.
Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological reactivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as 'iron only' hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containing hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center believed to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2-. It is not present in all species of Desulfovibrio. The nickel-(iron-sulfur)-containing hydrogenases [( NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2-. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(iron-sulfur)-selenium-containing hydrogenases [( NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The complex formation between the tetraheme cytochrome c3 and hexadecaheme high molecular weight cytochrome c (Hmc), the structure of which has recently been resolved, has been characterized by cross-linking experiments, EPR, electrochemistry and kinetic analysis, and some key parameters of the interaction were determined. The analysis of electron transfer between [Fe] hydrogenase, cytochrome c3 and Hmc demonstrates a redox-shuttling role of cytochrome c3 in the pathway from hydrogenase to Hmc, and shows an effect of redox state on the interaction between the two cytochromes. The role of polyheme cytochromes in electron transfer from periplasmic hydrogenase to membrane redox proteins is assessed. A model with cytochrome c3 as an intermediate between hydrogenase and various polyheme cytochromes is proposed and its physiological consequences are discussed.  相似文献   

16.
We have carried out a detailed redox titration monitored by EPR on the hydrogenase from Desulfovibrio vulgaris Miyazaki. Typical 3Fe and nickel signals have been observed, which are very similar to those given by Desulfovibrio gigas hydrogenase in all the characteristic redox states of the enzyme. This confirms that D. vulgaris Miyazaki hydrogenase is a Ni-Fe enzyme closely related to that from D. gigas, as was recently proposed on the basis of sequence comparisons (Deckers, H.M., Wilson, F.R. and Voordouw, G. (1990) J. Gen. Microb. 136, 2021-2028).  相似文献   

17.
Primary structure of hydrogenase I from Clostridium pasteurianum   总被引:3,自引:0,他引:3  
J Meyer  J Gagnon 《Biochemistry》1991,30(40):9697-9704
Peptides obtained by cleavage of Clostridium pasteurianum hydrogenase I have been sequenced. The data allowed design of oligonucleotide probes which were used to clone a 2310-bp Sau3A fragment containing the hydrogenase encoding gene. The latter has been sequenced and was found to translate into a protein composed of 574 amino acids (Mr = 63,836), including 22 cysteines. C. pasteurianum hydrogenase is homologous to, but longer than, the large subunit of Desulfovibrio vulgaris (Hildenborough) [Fe] hydrogenase. It includes an additional N-terminal domain of ca. 110 amino acids which contains eight cysteine residues and which therefore could accommodate two of its postulated four [4Fe-4S] clusters. C. pasteurianum hydrogenase is most similar in length, cysteine positions, and sequence altogether to the translation product of a putative hydrogenase encoding gene from D. vulgaris (Hildenborough). Comparisons of the available [Fe] hydrogenase sequences show that these enzymes constitute a structurally rather homogeneous family. While they differ in the length of their N-termini and in the number of their [4Fe-4S] clusters, they are highly similar in their C-terminal halves, which are postulated to harbor the hydrogen-activating H cluster. Five conserved cysteine residues occurring in this domain are likely ligands of the H cluster. Possible ligation by other residues, and in particular by methionine, is discussed. The comparisons carried out here show that the H clusters most probably possess a common structural framework in all [Fe] hydrogenases. On the basis of the available data on these proteins and on the current developments in iron-sulfur chemistry, the H clusters possibly contain six to eight iron atoms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Two ferredoxins, Fd I and Fd II, were isolated and purified from Desulfovibrio vulgaris Miyazaki. The major component, Fd I, is an iron-sulfur protein of Mr 12,000, composed of two identical subunits. The absorption spectra of Fd I and Fd II have a broad absorption shoulder near 400 nm characteristic of iron-sulfur proteins. The purity index, A400/A280, of Fd I is 0.69, and its millimolar absorption coefficient at 400 nm is 3.73 per Fe. It contains two redox centers with discrete redox behaviors. The amino acid composition and the N-terminal sequence of Fd I are similar to those of Fd III of Desulfovibrio africanus Benghazi and Fd II of Desulfovibrio desulfuricans Norway. Fd I does not serve as an electron carrier for the hydrogenase of D. vulgaris Miyazaki, but it serves as a carrier for pyruvate dehydrogenase of this bacterium. The evolution of H2 from pyruvate was observed by a reconstructed system containing purified hydrogenase, cytochrome C3, Fd I, partially purified pyruvate dehydrogenase, and CoA. The H2-sulfite reducing system can be reconstructed from the purified hydrogenase, cytochrome C3, Fd I and desulfoviridin (sulfite reductase), but the reaction rate is very slow compared to that of the crude extract at the same molar ratio of the components.  相似文献   

19.
A central step in the energy metabolism of sulfate-reducing bacteria is the oxidation of molecular hydrogen, catalyzed by a periplasmic hydrogenase. The resulting electrons are then transferred to various electron transport chains and used for cytoplasmic sulfate reduction. The complex formation between [NiFeSe] hydrogenase and the soluble periplasmic polyheme cytochromes from Desulfomicrobium norvegicum was characterized by cross-linking experiments, BIAcore and kinetics analysis. Analysis of electron transfer between [NiFeSe] hydrogenase and octaheme cytochrome c(3) (M(r) 26? omitted?000) pointed out that this cytochrome is reduced faster in the presence of catalytic amounts of tetraheme cytochrome c(3) (M(r) 13? omitted?000) isolated from the same organism. The activation of the hydrogenase-dependent reduction of polyheme cytochromes by cytochrome c(3) (M(r) 13? omitted?000), which is now described in both Desulfovibrio and Desulfomicrobium, is proposed as a general mechanism. During this process, cytochrome c(3) (M(r) 13? omitted?000) would act as an electron shuttle in between hydrogenase and the polyheme cytochromes and its conductivity appears to be an important factor.  相似文献   

20.
The genetic diversity of Desulfovibrio species in environmental samples was determined by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified [NiFe] hydrogenase gene fragments. Five different PCR primers were designed after comparative analysis of [NiFe] hydrogenase gene sequences from three Desulfovibrio species. These primers were tested in different combinations on the genomic DNAs of a variety of hydrogenase-containing and hydrogenase-lacking bacteria. One primer pair was found to be specific for Desulfovibrio species only, while the others gave positive results with other bacteria also. By using this specific primer pair, we were able to amplify the [NiFe] hydrogenase genes of DNAs isolated from environmental samples and to detect the presence of Desulfovibrio species in these samples. However, only after DGGE analysis of these PCR products could the number of different Desulfovibrio species within the samples be determined. DGGE analysis of PCR products from different bioreactors demonstrated up to two bands, while at least five distinguishable bands were detected in a microbial mat sample. Because these bands most likely represent as many Desulfovibrio species present in these samples, we conclude that the genetic diversity of Desulfovibrio species in the natural microbial mat is far greater than that in the experimental bioreactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号