首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A method is described that is designed to compare, in a standardized procedure, bivariate flow karyotypes of Hoechst 33258 (HO)/Chromomycin A3 (CA) stained human chromosomes from cells with aberrations with a reference flow karyotype of normal chromosomes. In addition to uniform normalization of normal and abnormal flow karyotypes, the main purpose is detection of structurally abnormal chromosomes in often complex karyotypes of tumor cells. The method, which has been implemented in a computer program, consists of a comparison of individual chromosome peaks with the positions of peaks in the flow karyotype constituted by normal chromosomes and takes into account the natural variability in base composition of normal chromosomes among healthy individuals. Flow-karyotypes are normalized using an iterative fitting procedure, using corrections for (1) amplification of HO and CA fluorescence, (2) cross-talk between the fluorescence signals of HO and CA, and (3) offset of the HO and CA origin. Flow karyotypes of two cell lines, one with a simple deletion and the other with more complex karyotypic changes, were analyzed. The results of flow analysis were found to be in general agreement with the cytogenetic analysis of quinacrine banded karyotypes.  相似文献   

2.
Quantification of the Hoechst and chromomycin A3 fluorescence intensities of mitotic human chromosomes isolated from karyotypically normal and abnormal cells was performed with a dual beam flow cytometer. The resultant flow karyotypes contain information about the relative DNA content and base composition of chromosomes and their relative frequencies in the mitotic cell sample. The relative copy number of X and Y chromosomes was determined for 38 normal males and females and 6 cell lines with X or Y chromosome aneuploidy. Flow karyotype diagnoses corresponded with conventional cytogenetic results in all cases. We show that chromosome DNA content can be derived from peak position in Hoechst vs. chromomycin flow karyotypes. These values are linearly related to propidium iodide staining intensity as measured with flow cytometry and to the binding of gallocyanin chrome alum to phosphate groups as measured with slide-based scanning photometry. Cell lines with deleted or dicentric X chromosomes ranging in length from 0.53 to 1.95 times normal were analyzed by using flow cytometry. The measured difference in DNA content between a normal X and each of the structurally abnormal chromosomes was linearly correlated to the difference predicted from cytogenetics and/or probe analyses. Deletions of 3-5 Mb, which were at and below the detection limits of conventional cytogenetics, could be quantified by flow karyotyping in individuals with X-linked diseases such as Duchenne muscular dystrophy, choroideremia, and ocular albinism/ichthyosis. The results show that the use of flow karyotyping to quantify the size of restricted regions of the genome can complement conventional cytogenetics and other physical mapping techniques in the study of genetic disorders.  相似文献   

3.
Purifying human Y chromosomes by flow cytometry and sorting   总被引:1,自引:0,他引:1  
A method of producing an enriched sample of human Y chromosomes from peripheral blood lymphocytes is described. Metaphase chromosomes were prepared from peripheral blood lymphocytes donated by 17 normal male individuals. A suspension of chromosomes in a polyamine buffer was produced from each sample, stained with the fluorescent dye Hoechst 33258, and passed through a flow cytometer and sorter. Following analysis of the 17 fluorescence distributions, a single donor was found giving a separate peak corresponding to the Y chromosome. Seventy percent of the chromosomes sorted from this peak were identified as Y chromosomes. Batches of a million Y chromosomes were produced from each of several 40 ml donations of peripheral blood. These were assessed for the amount of Y DNA present and used to construct a DNA library.  相似文献   

4.
The large size and complex polyploid nature of many genomes has often hampered genomics development, as is the case for several plants of high agronomic value. Isolating single chromosomes or chromosome arms via flow sorting offers a clue to resolve such complexity by focusing sequencing to a discrete and self-consistent part of the whole genome. The occurrence of sufficient differences in the size and or base-pair composition of the individual chromosomes, which is uncommon in plants, is critical for the success of flow sorting. We overcome this limitation by developing a robust method for labeling isolated chromosomes, named Fluorescent In situ Hybridization In suspension (FISHIS). FISHIS employs fluorescently labeled synthetic repetitive DNA probes, which are hybridized, in a wash-less procedure, to chromosomes in suspension following DNA alkaline denaturation. All typical A, B and D genomes of wheat, as well as individual chromosomes from pasta (T. durum L.) and bread (T. aestivum L.) wheat, were flow-sorted, after FISHIS, at high purity. For the first time in eukaryotes, each individual chromosome of a diploid organism, Dasypyrum villosum (L.) Candargy, was flow-sorted regardless of its size or base-pair related content. FISHIS-based chromosome sorting is a powerful and innovative flow cytogenetic tool which can develop new genomic resources from each plant species, where microsatellite DNA probes are available and high quality chromosome suspensions could be produced. The joining of FISHIS labeling and flow sorting with the Next Generation Sequencing methodology will enforce genomics for more species, and by this mightier chromosome approach it will be possible to increase our knowledge about structure, evolution and function of plant genome to be used for crop improvement. It is also anticipated that this technique could contribute to analyze and sort animal chromosomes with peculiar cytogenetic abnormalities, such as copy number variations or cytogenetic aberrations.  相似文献   

5.
The human chromosomes distribution in a sucrose density gradient was studied using a new computer method of the quantitative analysis of flow karyotypes. The dual-parameter flow distributions of human chromosomes fluorescence intensities of the sucrose density gradient fractions were analyzed to obtain the quantity of each chromosome. The chromosomes were found to distribute over sucrose density gradient as follows: 1) fractions with low sucrose density mostly contain chromosomes 1-7, and their quantity is increased between 1.4- to 3.2-fold in comparison with the control unfractionated suspension; 2) medium density fractions are enriched with chromosomes 8-20 up to 2.4-fold; 3) fractions with a high sucrose density mostly contain small chromosomes 21-22 and fragments of broken chromosomes. So the new method of quantitative analysis of flow karyotypes allows one to determine the efficiency of enrichment and the maximally enriched fraction for any chosen chromosome. Maximally enriched fractions maximize the rate of preparative flow sorting of individual chromosomes for research or biotechnology purposes.  相似文献   

6.
A microfluorimetric method has been developed for determination of DNA content in individual human chromosomes. The method is based on a preliminary identification of chromosomes with Hoechst 33258 followed by staining of the chromosomes with Feulgen reaction by using Schiff’s reagent type ethidium bromide-SO2 and then by measuring the fluorescence intensity of the chromosomes by using an image analyzer. The method allows determining the DNA content of individual chromosomes with an accuracy up to 4.5 fg. The DNA content of individual human chromosomes and their p-and q-arms, as well as homologous chromosomes, were measured by using the developed method. It has been shown that the DNA content in chromosomes of the normal human karyotype is unstable and can fluctuate in some chromosomes within 35–40 fg.  相似文献   

7.
The analysis of the complex genome of common wheat (Triticum aestivum, 2n = 6x = 42, genome formula AABBDD) is hampered by its large size ( approximately 17 000 Mbp) and allohexaploid nature. In order to simplify its analysis, we developed a generic strategy for dissecting such large and complex genomes into individual chromosomes. Chromosome 3B was successfully sorted by flow cytometry and cloned into a bacterial artificial chromosome (BAC), using only 1.8 million chromosomes and an adapted protocol developed for this purpose. The BAC library (designated as TA-3B) consists of 67 968 clones with an average insert size of 103 kb. It represents 6.2 equivalents of chromosome 3B with 100% coverage and 90% specificity as confirmed by genetic markers. This method was validated using other chromosomes and its broad application and usefulness in facilitating wheat genome analysis were demonstrated by target characterization of the chromosome 3B structure through cytogenetic mapping. This report on the successful cloning of flow-sorted chromosomes into BACs marks the integration of flow cytogenetics and genomics and represents a great leap forward in genetics and genomic analysis.  相似文献   

8.
Summary A number of cell lines, some containing chromosomes with distinctive heteromorphisms, have been flow karyotyped using a single laser flow sorter in an attempt to select those suitable for sorting all human chromosomes individually. Using the non-base-specific DNA stain ethidium bromide, chromosomes 3,4,5, and 6 form individual peaks in practically all normal subjects, while the right combination of heteromorphisms enables chromosomes 1, 2, 8, 9, 13, 16, 17, 18, 19, 20, 21, 22, and Y to be sorted separately. Two male cell lines, one containing a duplication and one a deletion of the X, produce flow karyotypes suitable for sorting chromosomes 7 and 8. The use of numerical chromosome abnormalities to enrich the sex chromosomes and the autosomes 18 and 21 is also illustrated. The DNA stain Hoechst 33258 binds preferentially to AT base pairs. Flow karyotypes produced with this fluorochrome separate some chromosomes not well separated with ethidium bromide. Chromosomes 5, 6, 8, 13, 14, 15, 17, and 20, and Y can be sorted individually with Hoechst 33258 with the right combination of heteromorphisms. Using these techniques, all human chromosomes apart from 10, 11, and 12 have been found as individual flow karyotype peaks, suitable for sorting with a high degree of purity.  相似文献   

9.
J N Lucas  J W Gray 《Cytometry》1987,8(3):273-279
We have applied slit-scan flow cytometry (SSFCM) to classify human chromosomes according to their centromeric index (CI) and relative DNA content. The resulting bivariate--CI vs. DNA content--distributions shows 14 peaks for normal human chromosomes. Distinct peaks are produced by chromosomes 1, 2, 3, 4 + 5, 6 + 7 + X, 8, 13 + 14 + 15, 16, 17 + 18, 19 + 20, and 21 + 22 + Y. In addition, chromosomes 9 through 12 are resolved into three peaks. The identity of the chromosomes comprising each peak was determined by comparing CI vs. DNA content distributions measured for normal human chromosomes by means of SSFCM with CI and DNA content values measured for human chromosomes with image analysis. The accuracy of CI measurement by SSFCM was verified by measuring CIs for human chromosomes isolated from human/rodent hybrid cell lines containing only a few known human chromosomes. These studies showed CIs measured for human chromosomes 1-19 and 21 to be in close agreement with the CIs calculated by means of image analysis. We further confirmed the chromosome assignments for each peak by showing that the relative volumes of the peaks in the CI vs. DNA content distributions for chromosomes from normal cells are similar to the relative frequencies of chromosomes expected for these peaks based on the peak assignments.  相似文献   

10.
A new flow-cytometric method is described that permits analysis of the number of chromosomes of individual cells. Preliminary stained mitotic cells are passed through a specially designed flow chamber in which they are destroyed just before passing through the focused laser beam of the flow cytometer. Signals from chromosomes of the destroyed cells are counted, and the results are represented as a distribution of the number of chromosomes in the cells. The method may be applied for the detection of relatively rare cells with abnormal numbers of chromosomes in biological and clinical research.  相似文献   

11.
Simple, fast and cost-effective method for preparation of DNA with high molecular weight (HMW DNA) from plant nuclei and mitotic chromosomes has been developed. The technique involves mechanical homogenization of formaldehyde-fixed root tips, purification of nuclei and/or chromosomes on sucrose gradient, embedding in low-melting-point agarose, and DNA isolation in agarose plugs. Alternatively, nuclei and chromosomes may be purified using flow cytometry. Majority of DNA obtained is megabase-sized and well digestible by restriction endonucleases. The method is highly efficient as microgram amounts of DNA can be obtained from only several milligrams of plant tissue. Handling negligible amounts of plant material reduces the consumption of chemicals. Furthermore, the use of root tips makes it possible to obtain high-quality DNA even from plant species with leaves that are rigid or rich in secondary metabolites such as polyphenols. It is expected that preparation of HMW DNA from root tip nuclei will facilitate long-range mapping and construction of large-insert DNA libraries also in these species. Successful isolation of HMW DNA from flow-sorted chromosomes opens a way for construction of chromosome-specific large-insert libraries in plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Determination of the DNA content of human chromosomes by flow cytometry   总被引:10,自引:0,他引:10  
The mean relative DNA content of each human chromosome was calculated from flow karyotypes of ethidium bromide-stained chromosomes obtained from healthy, normal individuals. These values were found to correlate closely with previously published data obtained by photometric scanning of stained, fixed chromosomes. Calculations of the normal variation in DNA content of each human chromosome indicated that chromosomes 1, 9, 16, and Y (chromosomes with large centric heterochromatic regions) were the most variable, followed by the acrocentrics, 13, 14, 15, 21, and 22. Chromosomes 2, 3, 18, and 19 were also found to vary significantly in DNA content. Chromosomes from a number of subjects with extreme heteromorphisms were flow karyotyped to obtain an estimate of the extent of variation in DNA content of each chromosome. The greatest difference between extreme variants was found for chromosome 1 (which differed by 0.82% of the total genomic DNA), followed by 16 and 9. The largest Y-chromosome variant was 85.9% bigger than the smallest. The precise karyotype analysis produced by flow cytometry resolved many differences between chromosome homologs, including some that cannot be readily distinguished cytogenetically. The implications of these findings for detection of chromosome abnormalities by flow karyotype analysis are discussed.  相似文献   

13.
High-resolution FISH on super-stretched flow-sorted plant chromosomes   总被引:11,自引:0,他引:11  
A novel high-resolution fluorescence in situ hybridisation (FISH) strategy, using super-stretched flow-sorted plant chromosomes as targets, is described. The technique that allows longitudinal extension of chromosomes of more than 100 times their original metaphase size is especially attractive for plant species with large chromosomes, whose pachytene chromosomes are generally too long and heterochromatin patterns too complex for FISH analysis. The protocol involves flow cytometric sorting of metaphase chromosomes, mild proteinase-K digestion of air-dried chromosomes on microscopic slides, followed by stretching with ethanol:acetic acid (3 : 1). Stretching ratios were assessed in a number of FISH experiments with super-stretched chromosomes from barley, wheat, rye and chickpea, hybridised with 45S and 5S ribosomal DNAs and the [GAA]n microsatellite, the [TTTAGGG]n telomeric repeat and a bacterial artificial chromosome (BAC) clone as probes. FISH signals on stretched chromosomes were brighter than those on the untreated control, resulting from better accessibility of the stretched chromatin and maximum observed sensitivity of 1 kbp. Spatial resolution of neighbouring loci was improved down to 70 kbp as compared to 5-10 Mbp after FISH on mitotic chromosomes, revealing details of adjacent DNA sequences hitherto not obtained with any other method. Stretched chromosomes are advantageous over extended DNA fibres from interphase nuclei as targets for FISH studies because they still retain chromosomal integrity. Although the method is confined to species for which chromosome flow sorting has been developed, it provides a unique system for controlling stretching degree of mitotic chromosomes and high-resolution bar-code FISH.  相似文献   

14.
A dual laser FACS IV cell sorter has been used to obtain bivariate flow histograms of human metaphase chromosomes stained with the DNA-specific dyes, 33258 Hoechst and chromomycin A3. Approximately twenty distinct chromosomal fluorescence populations can be resolved using this double staining technique and the flow cytometer which has been modified only by the substitution of a specially designed air-spaced achromat for the standard focusing lens. Metaphase chromosomes from two different cell lines bearing inverted duplicated #15 autosomes have been subjected to bivariate chromosome analysis. In both cases, the inverted duplicated #15 chromosomes have been identified in the bivariate flow histogram. This identification was supported by experiments in which doubly stained chromosomes were counterstained with either netropsin or distamycin A, resulting in a relative increase in the 33258 Hoechst fluorescence intensity of the structurally abnormal #15 chromosomes, compared with the other chromosomes, as predicted by cytological studies. The possibility of identifying and separating small abnormal autosomes using commercially available instrumentation should facilitate the use of recombinant DNA techniques for the construction of libraries which are highly enriched for DNA sequences from limited autosomal subregions important in the study of chromosomal abnormalities such as deletions, translocations and inversion duplications.  相似文献   

15.
The total variation of chromosome peak positions, in bivariate distributions of Hoechst 33258 and chromomycin A3 fluorescence of 19 healthy individuals, was compared with the experimental variation, determined from 23 bivariate distributions of chromosomes prepared separately from a single cell lineage. The experimental variation in Hoechst and chromomycin fluorescence and the relative chromosomal DNA content were determined from experiments performed over several days. The additional variance contributed by time was the same as the daily variance. The accuracy by which the relative chromosomal DNA content can be calculated from bivariate peak positions was investigated. A least squares method was used to fit the distributions of relative DNA content, obtained, respectively, from mono- and bivariate flow analyses of chromosomes from the same cell lineage. In general the DNA contents match quite well, but for a few chromosomes a difference was found, statistically discernible at the 5% level. The average relative chromosomal DNA content of the chromosomes from the 19 normal individuals, calculated from bivariate peak positions, showed a linear relation with the estimates published by other investigators.  相似文献   

16.
While analysis and sorting of human chromosomes by flow cytometry has been widely used, isolation of a pure mouse chromosome remains very difficult, since most murine chromosomes are quite similar in size. To overcome this problem, we have analysed mouse cell lines having either Robertsonian translocations or isochromosomes. The resulting metacentric chromosomes are very different in size and in morphology from normal mouse acrocentric chromosomes. These characteristics have been analysed by computer-monitored flow cytometry, facilitated by improvements in the chromosome extraction procedure. Signals characteristic of the iso-lq chromosome in cell line PCC4 azaR1, and of the normal X chromosome in the mouse strain 22CD have thus been obtained. These chromosomes have been sorted and can be easily recognized by fluorescence microscopy when collected onto serum-albumin-coated microscope slides. The technical modifications made, coupled with the existence of a great diversity of metacentric chromosomes resulting from Robertsonian translocations, should allow the purification of a number of different mouse chromosomes.  相似文献   

17.
The genetic significance of accessory bisatellited marker chromosomes   总被引:8,自引:3,他引:5  
Ten new cases of accessory bisatellited marker chromosomes examined in different laboratories are reported. As a basis for genetic counseling in the context of prenatal diagnosis a cytogenetic categorization of such marker chromosomes is proposed and an estimation of the genetic risk associated with each category is carried out. The results are as follows: There is no increased risk for offspring with abnormal phenotype born to a healthy carrier of an accessory bisatellited marker chromosome with either a single or two closely adjacent C-bands (Category AI or AII). The unbiased sample of cases with de novo accessory bisatellited marker chromosomes of categories AI and AII is too small to allow a satisfactory estimation of the actual risk that, in case of such a prenatal finding, the foetus may not show a normal phenotype as a consequence of the marker chromosome. There is, however, evidence that this risk may be lower than 10%. Accessory bisatellited marker chromosomes showing a discrete pattern of G- and R-bands situated between two distant C-bands (Category AIII) usually indicate a chromosomal imbalance giving rise to an abnormal phenotype. Mosaic carriers of such dicentric marker chromosomes may, however, present a normal phenotype.  相似文献   

18.
Summary The X chromosomes of individuals with isolated steroid sulphatase deficiency (X-linked ichthyosis) from ten families were studied by flow karyotype analysis. In four of the families, a small but significant reduction in the relative fluorescence of the X chromosome was detected consistent with a deletion ranging from 1.2%–3.4% of the X and amounting to a DNA loss of 1.9–5.2 million base pairs. In the remaining six families, three of which demonstrated a molecular deletion of the DNA sequence GMGX9 (DXS237), the relative fluorescence of the X chromosomes was indistinguishable from normal. The phenotypes of those with X deletions detectable by flow cytometry were similar to those of patients without such deletions.  相似文献   

19.
Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 10(2)-10(4) chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.  相似文献   

20.
Summary Using slit-scan flow cytometry, the shape of human metaphase chromosomes, as expressed in their centromeric index (CI), and the DNA content of the chromosomes have been used as parameters in bivariate flow karyotyping. The resolution of the DNA vs CI flow karyogram of the larger chromosomes up to chromosome 13 is much higher than the resolution obtained in the DNA-based monovariate flow karyogram. Chromosome length appears to be an important factor in the resolution of the DNA vs CI-based flow karyogram. A method has been developed to obtain chromosomes in suspension that are long enough for adequate analysis. Several chromosomes that cannot be distinguished or are difficult to discriminate in the DNA-based karyogram can now be distinguished as individual peaks, e.g., chromosomes 1 and 2. The peak of chromosomes 9–12 can be separated into two peaks formed by chromosomes 9 and 11, and 10 and 12, respectively. The advantage of the system applied in this study is that the DNA vs CI analysis is performed on-line, allowing chromosomes to be sorted on the bases of their CI. Pulse shapes of the selected chromosomes can be recorded simultaneously with the transmission of the sorting command. The purity of the sorted fraction can be estimated from the offline inspection of these pulse shapes. Fractions of chromosome 1 have been sorted out on the basis of the CI information, centrifuged on slides, fixed and subsequently banded with trypsin and Giemsa or hybridized with the chromosome 1 specific probe, pUC 1.77. The observed purity under the selected conditions ranges from 80%–99% and is in accordance with the estimates of the purities made on the basis of the simultaneously recorded pulse shapes. Fixation of the chromosome suspension prior to flow cytometric analysis and sorting appears to be essential for the preservation of their morphology and has no adverse influence on the resolution of Giemsa banding or on the quality of in situ hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号