首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The 521-pigment extracted out of the retina of the Tokay gecko has the typical stereospecificity of the vertebrate visual pigments. This is true for the pigment in the chloride-depleted, "blue-shifted" state as well as for the normal pigment with added chloride. While in the chloride-deficient state, pigment regeneration occurred with both 11-cis- and 9-cis-retinals and the regenerated photopigments were also in the blue-shifted, chloride-depleted state. As with the native pigment, these regenerated pigments were bathochromically shifted to their normal positions by the addition of chloride. Chloride-deficient opsin by itself also responded to chloride for the pigment regenerated with 11-cis-retinal from such chloride-treated opsin was in the normal 521-position. Regeneration was always rapid, reaching completion in less than 5 min, and was significantly faster than for cow rhodopsin regenerating under the same conditions. This rapid rate was found with or without chloride, with both 11-cis- and 9-cis-retinals and in the presence of the sulfhydryl poison, p-hydroxymercuribenzoate (PMB). Like the native chloride-deficient pigment, the regenerated chloride-depleted photopigments responded to PMB by a blue shift beyond the position of the chloride-deficient state. The addition of chloride to these "poisoned" regenerated pigments caused a bathochromic shift of such magnitude as to indicate a repair of both the PMB and chloride-deficient blue shift. In this discussion the possible implications of these results to phylogenetic considerations are considered as well as to some molecular properties of the 521-pigment.  相似文献   

2.
A visual pigment is composed of retinal bound to its apoprotein by a protonated Schiff base linkage. Light isomerizes the chromophore and eventually causes the deprotonation of this Schiff base linkage at the meta II stage of the bleaching cycle. The meta II intermediate of the visual pigment is the active form of the pigment that binds to and activates the G protein transducin, starting the visual cascade. The deprotonation of the Schiff base is mandatory for the formation of meta II intermediate. We studied the proton binding affinity, pKa, of the Schiff base of both octopus rhodopsin and the gecko cone pigment P521 by spectral titration. Several fluorinated retinal analogs have strong electron withdrawing character around the Schiff base region and lower the Schiff base pKa in model compounds. We regenerated octopus and gecko visual pigments with these fluorinated and other retinal analogs. Experiments on these artificial pigments showed that the spectral changes seen upon raising the pH indeed reflected the pKa of the Schiff base and not the denaturation of the pigment or the deprotonation of some other group in the pigment. The Schiff base pKa is 10.4 for octopus rhodopsin and 9.9 for the gecko cone pigment. We also showed that although the removal of Cl- ions causes considerable blue-shift in the gecko cone pigment P521, it affects the Schiff base pKa very little, indicating that the lambda max of visual pigment and its Schiff base pKa are not tightly coupled.  相似文献   

3.
Retinal extracts of the Australian gecko, Phyllurus milii (White), have revealed the presence of a photosensitive pigment, unusual for terrestrial animals, because of its absorption maximum at 524 mµ. This pigment has an absorption spectrum which is identical in form with that of other visual chromoproteins. It is not a porphyropsin, for bleaching revealed the presence, not of retinene2, but of retinene1 as a chromophore. Photolabile pigments with characteristics similar to those of the Phyllurus visual pigment were also detected in retinal extracts of six other species of nocturnal geckos. The presence of this retinal chromoprotein adequately accounts for the unusual visual sensitivity curve described by Denton for the nocturnal gecko. This pigment may have special biological significance in terms of the unique phylogenetic position of geckos as living representatives of nocturnal animals which retain some of the characteristics of their diurnal ancestors. The occurrence of this retinene1 pigment, intermediate in spectral position between rhodopsin and iodopsin, is interpreted in support of the transmutation theory of Walls. The results and interpretation of this investigation point up the fact that, from a phylogenetic point of view, too great an emphasis on the duplicity theory may serve to detract attention from the evolutionary history of the retina and the essential unitarianism of the visual cells.  相似文献   

4.
Yokoyama S  Blow NS 《Gene》2001,276(1-2):117-125
We have isolated a full-length cDNA encoding a putative ultraviolet (UV)-sensitive visual pigment of the Tokay gecko (Gekko gekko). This clone has 57 and 59% sequence similarities to the gecko RH2 and MWS pigment genes, respectively, but it shows 87% similarity to the UV pigment gene of the American chameleon (Anolis carolinensis). The evolutionary rates of amino acid replacement are significantly higher in the three gecko pigments than in the corresponding chameleon pigments. The accelerated evolutionary rates reflect not only the transition from cones to rods in the retina but also the blue-shift in the absorption spectra of the gecko pigments.  相似文献   

5.
1.  Underwater downwelling quantal irradiance spectra were measured in estuarine and coastal areas under various tidal and rainfall conditions. At midday the available spectrum near the bottom has maximal irradiance in the region of about 570 to 700 nm in the estuary, whereas in offshore coastal areas greatest irradiance occurs between 500 and 570 nm. At twilight in an estuary, maximal underwater downwelling irradiance shifts to the 490–520 nm region.
2.  The visual pigment absorption maxima of 27 species of benthic crustaceans from semi-terrestrial, estuarine and coastal areas have values ranging from 483 to 516 nm. There is no obvious shift in the max from long wavelengths in estuarine species to shorter wavelengths in coastal species. The only match between max and midday spectrum was for a continental shelf species,Geryon quinquedens.
3.  The Sensitivity Hypothesis is predicted to account for the visual sensitivity of benthic crabs from estuarine and coastal areas. To assess the match between visual spectral sensitivity and environmental spectra, photon capture effectiveness was calculated for a range of idealized visual pigment absorption functions operating in the measured environmental spectra.
4.  All crab species are poorly adapted for maximal photon capture at midday, since pigments having max longer than 540 nm function best under all daytime spectral conditions. Photon capture of visual pigments with max near 500 nm improves dramatically at twilight, particularly at lower visual pigment densities and shallow depths. However, pigments having max at wavelengths longer than those for the crabs are equally or more efficient at photon capture. Therefore the Sensitivity Hypothesis is not supported for crustaceans.
  相似文献   

6.
7.
The visual pigments and oil droplets in the retina of the diurnal gecko Gonatodes albogularis were examined microspectrophotometrically, and the spectral sensitivity under various adapting conditions was recorded using electrophysiological responses. Three classes of visual pigments were identified, with max at about 542, 475, and 362 nm. Spectral sensitivity functions revealed a broad range of sensitivity, with a peak at approximately 530–540 nm. The cornea and oil droplets were found to be transparent across a range from 350–700 nm, but the lens absorbed short wavelength light below 450 nm. Despite the filtering effect of the lens, a secondary peak in spectral sensitivity to ultraviolet wavelengths was found. These results suggest that G. albogularis does possess the visual mechanisms for discrimination of the color pattern of conspecifics based on either hue or brightness. These findings are discussed in terms of the variation in coloration and social behavior of Gonatodes.Abbreviations ERG electroretinogram - MSP microspectrophotometry - UV ultraviolet - max wavelength of maximum absorbance  相似文献   

8.
The rod opsin sequences from Gambusia affinis holbrooki and Poecilia reticulata were cloned and sequenced. The opsin sequences were found to be 96.8% identical, reflecting the similarity of the rod visual pigment absorbances in these two Poeciliid fish.  相似文献   

9.
10.
Much progress has been made in recent years toward understanding the interactions between various proteins responsible for visual transduction which are initiated by an activated state of visual pigments. However, the changes which take place in the visual pigments themselves to convert them to the activated state are more poorly understood. Many spectroscopic techniques have been applied to this problem in recent years and considerable progress has been made. A major goal of these efforts is to understand at which stages protein change occurs and to characterize its structural features. In the visual system evidence is accumulating, for example, that chromophore independent protein change begins immediately prior to lumirhodopsin formation. Considerable insight has been gained recently into the early intermediates of visual transduction and the stage is set to achieve similar understanding of the later intermediates leading to rhodopsin's activated state.  相似文献   

11.
12.
Visual pigments, oil droplets and photoreceptor types in the retinas of four species of true chameleons have been examined by microspectrophotometry. The species occupy different photic environments: two species of Chamaeleo are from Madagascar and two species of Furcifer are from Africa and the Arabian Peninsula. In addition to double cones, four spectrally distinct classes of single cone were identified. No rod photoreceptors were observed. The visual pigments appear to be mixtures of rhodopsins and porphyropsins. Double cones contained a pale oil droplet in the principle member and both outer segments contained a long-wave-sensitive visual pigment with a spectral maximum between about 555 nm and 610 nm, depending on the rhodopsin/porphyropsin mixture. Long-wave-sensitive single cones contained a visual pigment spectrally identical to the double cones, but combined with a yellow oil droplet. The other three classes of single cone contained visual pigments with maxima at about 480–505, 440–450 and 375–385 nm, combined with yellow, clear and transparent oil droplets respectively. The latter two classes were sparsely distributed. The transmission of the lens and cornea of C. dilepis was measured and found to be transparent throughout the visible and near ultraviolet, with a cut off at about 350 nm.  相似文献   

13.
Summary The visual pigments of four mesopelagic crustacean species were studied at sea by means of microspectrophotometry. The absorbance maxima obtained for the visual pigments and their metarhodopsins, respectively, were: 493 nm and 481 nm (Systellaspis debilis), 485 nm and 480 nm (Acanthephyra curtirostris), 491 nm and 482 nm (A. smithi), and 495 nm and 487 nm (Sergestes tenuiremis). The spectral characteristics of the rhodopsins and metarhodopsins permit high photosensitivity and facilitate photoregeneration in a nearly monochromatic environment. Photic regeneration of rhodopsins from the deep-sea environment was demonstrated, and data were obtained which are consistent with the occurrence of dark regeneration. Specific optical density of the observed visual pigments was calculated for two species.  相似文献   

14.
15.
On the visual pigments of deep-sea fish   总被引:1,自引:0,他引:1  
The retinal visual pigments of 52 species of deep-sea fish were measured by partial bleaching of detergent extracts. The retinae of 45 species contained only a single rhodopsin with maximum absorbance (λmax) at a wavelength between 474 and 490 nm, matching both the region of highest intensity downwelling sunlight and the maximum emission of most deep-sea bioluminescence. Seven species were shown to have more than one visual pigment within their retinae and these had λmax values that generally fell outside the usual range. One of these, Bonapartia pedaliota , was particularly interesting as, unlike most such multipigment species, it had one rhodopsin and one porphyropsin pigment, apparently based on different opsins. The relative proportions of the visual pigments in the seven multipigment species are presented.  相似文献   

16.
Journal of Comparative Physiology A - The visual pigments of peripheral retinula cells in fly eyes have been investigated by microspectrophotometry in vivo. Since flies have a pupil mechanism...  相似文献   

17.
Changes in the visual pigments of trout   总被引:3,自引:0,他引:3  
  相似文献   

18.
19.
Takenaka N  Yokoyama S 《Gene》2007,399(1):26-32
At present, molecular bases of spectral tuning in rhodopsin-like (RH2) pigments are not well understood. Here, we have constructed the RH2 pigments of nocturnal Tokay gecko (Gekko gekko) and diurnal American chameleon (Anolis carolinensis) as well as chimeras between them. The RH2 pigments of the gecko and chameleon reconstituted with 11-cis-retinal had the wavelengths of maximal absorption (lambda(max)'s) of 467 and 496 nm, respectively. Chimeric pigment analyses indicated that 76-86%, 14-24%, and 10% of the spectral difference between them could be explained by amino acid differences in transmembrane (TM) helices I-IV, V-VII, and amino acid interactions between the two segments, respectively. Evolutionary and mutagenesis analyses revealed that the lambda(max)'s of the gecko and chameleon pigments diverged from each other not only by S49A (serine to alanine replacement at residue 49), S49F (serine to phenylalanine), L52M (leucine to methionine), D83N (aspartic acid to asparagine), M86T (methionine to threonine), and T97A (threonine to alanine) but also by other amino acid replacements that cause minor lambda(max)-shifts individually.  相似文献   

20.
Most geckos are nocturnal forms and possess rod retinas, but some diurnal genera have pure-cone retinas. We isolated cDNAs encoding the diurnal gecko opsins, dg1 and dg2, similar to nocturnal gecko P521 and P467, respectively. Despite the large morphological differences between the diurnal and nocturnal gecko photoreceptor types, they express phylogenetically closely related opsins. These results provide molecular evidence for the reverse transmutation, that is, rods of an ancestral nocturnal gecko have backed into cones of diurnal geckos. The amino acid substitution rates of dgl and dg2 are higher than those of P521 and P467, respectively. Changes of behavior regarding photic environment may have contributed to acceleration of amino acid substitutions in the diurnal gecko opsins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号