首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Activity of endo-beta-mannanase increases during ripening of tomato (Lycopersicon esculentum Mill.) fruit of the cultivar Trust. beta-Mannoside mannohydrolase is also present during ripening, but its pattern of activity is different from that of endo-beta-mannanase. The increase in endo-beta-mannanase activity is greatest in the skin, and less in the outer and inner pericarp regions. This enzyme is probably bound to the walls of the outermost cell layers of the fruit during ripening, and it requires a high-salt buffer for effective extraction. The enzyme protein, as detected immunologically on Western blots, is present during the early stages of ripening, before any enzyme activity is detectable. The mRNA for the enzyme is also present at these stages; endo-beta-mannanase may be produced and sequestered in a mature-sized inactive form during early ripening. Most non-ripening mutants of tomato exhibit reduced softening and lower endo-beta-mannanase activity, but a cause-and-effect relationship between the enzyme and ripening is unlikely because some cultivars which ripen normally do not exhibit any endo-beta-mannanase activity in the fruit.  相似文献   

3.
Endo-β-mannanase is a hemicellulase that is present in tomato fruit, and plays a role in its ripening. This enzyme protein is detectable in the cultivar Walter, but it is inactive due to the absence of the terminal four amino acids from its carboxyl-end. To elucidate why this deletion eliminates the activity of endo-β-mannanase, a molecular dynamics (MD) study was conducted on the conformation of the enzyme at normal and elevated temperatures. The root mean square deviations, root mean square fluctuations per residue, and secondary structural evolution during MD simulations were analyzed. Differences in stability and dynamics between the active and inactive endo-β-mannanases were documented; the inactive form has a lower stability than the active one. The loss of key amino acids from the C-terminal end of the protein indirectly affects the conformation of the catalytic Glu318 and stability of active site because of interactions between residues at the C-terminus and the rest of protein.  相似文献   

4.
The accuracy of the sensitive gel-diffusion assay for endo-beta-mannanase activity was improved when protein was added to fruit extracts or into the substrate-gel matrix in which the enzyme assays were conducted. Mixing of commercially available protease inhibitors with fruit enzyme extracts also resulted in increased assayable activity. These treatments were less effective when applied to extracts from tomato seeds, which contained over three times more endogenous protein than fruit extracts. Thus the presence of added or higher amounts of endogenous proteins served as the protectant for endo-beta-mannanase during the course of the gel-diffusion assay, which required an incubation at 32 degrees C for at least 18 h. There was no difference in assayable endo-beta-mannanase activity in the presence and absence of added protein when measured rapidly by viscometry. An effective modification was made to the galactomannan substrate gel assay for endo-beta-mannanase, which is the most efficient method for assaying large numbers of extracts, to improve its accuracy when the enzyme is obtained from tissues containing a low endogenous protein content. This involved incorporating an optimal concentration of gelatin into the galactomannan assay matrix gel. Much higher enzyme activities were recorded, with up to a 10-fold increase for tomato fruit extracts, compared to the same samples assayed on gels with no gelatin added. This increased activity was also obtained using extracts from the fruit of cantaloupe, peach, and nectarine. When incorporated into esterified pectin substrate gels, gelatin also increased the assayable activity of pectin methylesterase. Thus the incorporation of protein (gelatin) into substrate gels during the assay also should be widely more useful for other cell-wall-mobilizing enzymes and hydrolases.  相似文献   

5.
Endo-beta-mannanase (EC 3.2.1.78) is involved in cell wall disassembly and the weakening of plant tissues by degrading mannan polymers in the cell walls. Endo-beta-mannanase genes are expressed in tomato (Lycopersicon esculentum) seeds (LeMAN1 and LeMAN2) and fruits (LeMAN3 and LeMAN4). A novel endo-beta-mannanase gene (termed LeMAN5) was found in the tomato genome by genome-walking PCR and bacterial artificial chromosome library screening. The 5'-upstream region of this endo-beta-mannanase gene contained four copies of the pollen-specific cis-acting elements POLLEN1LELAT52 (AGAAA). A GUS-reporter gene driven with the putative LeMAN5 promoter (-543 to +38) was activated in anthers and pollen of transgenic Arabidopsis, with the highest beta-glucuronidase activity detected in pollen. beta-Glucuronidase expression was detected in mature pollen retained in sporangia, discharged pollen, and elongating pollen tubes in transgenic Arabidopsis. Consistently, expression of LeMAN5 mRNA and endo-beta-mannnanase activity was detected in tomato anthers and pollen. In anthers, the highest mRNA expression and endo-beta-mannanase activity were detected during late stages of anther development, when pollen maturation occurred. Endo-beta-mannanase activity was present in discharged pollen, which was easily eluted in a buffer, indicating that the enzyme proteins are probably secreted from, and deposited on, the surface of pollen. These data suggest that the LeMAN5 endo-beta-mannanase is associated with anther and pollen development.  相似文献   

6.
The hormone ethylene regulates many aspects of plant growth and development, including fruit ripening. In transgenic tomato (Lycopersicon esculentum) plants, antisense inhibition of ethylene biosynthetic genes results in inhibited or delayed ripening. The dominant tomato mutant, Never-ripe (Nr), is insensitive to ethylene and fruit fail to ripen. The Nr phenotype results from mutation of the ethylene receptor encoded by the NR gene, such that it can no longer bind the hormone. NR has homology to the Arabidopsis ethylene receptors. Studies on ethylene perception in Arabidopsis have demonstrated that receptors operate by a "receptor inhibition" mode of action, in which they actively repress ethylene responses in the absence of the hormone, and are inactive when bound to ethylene. In ripening tomato fruit, expression of NR is highly regulated, increasing in expression at the onset of ripening, coincident with increased ethylene production. This expression suggests a requirement for the NR gene product during the ripening process, and implies that ethylene signaling via the tomato NR receptor might not operate by receptor inhibition. We used antisense inhibition to investigate the role of NR in ripening tomato fruit and determine its mode of action. We demonstrate restoration of normal ripening in Nr fruit by inhibition of the mutant Nr gene, indicating that this receptor is not required for normal ripening, and confirming receptor inhibition as the mode of action of the NR protein.  相似文献   

7.
beta-Mannosidase and endo-beta-mannanase are involved in the mobilization of the mannan-containing cell walls of the tomato seed endosperm. The activities of both enzymes increase in a similar temporal manner in the micropylar and lateral endosperm during and following germination. This increase in enzyme activities in the micropylar endosperm is not markedly reduced in seeds imbibed in abscisic acid although, in the lateral endosperm, endo-beta-mannanase activity is more suppressed by this inhibitor than is the activity of beta-mannosidase. Gibberellin-deficient (gib-1) mutants of tomato do not germinate unless imbibed in gibberellin; low beta-mannosidase activity, and no endo-beta-mannanase activity is present in seeds imbibed in water, but both enzymes increase strongly in activity in the seeds imbibed in the growth regulator. For production of full activity of both beta-mannosidase and endo-beta-mannanase in the endosperm, this tissue must be in contact with the embryo for at least the first 6 h of imbibition, which is indicative of a stimulus diffusing from the embryo to the endosperm during this time. These results suggest some correlation between the activities of beta-mannosidase and endo-beta-mannanase, particularly in the micropylar endosperm, in populations of tomato seeds imbibed in water, abscisic acid and gibberellin. However, when individual micropylar endosperm parts are used to examine the effect of the growth regulators and of imbibition in water on the production of the two enzymes, it is apparent that within these individual seed parts there may be large differences in the amount of enzyme activity present. Micropylar endosperms with high endo-beta-mannanase activity do not necessarily have high beta-mannosidase activity, and vice versa, which is indicative of a lack of co-ordination of the activities of these two enzymes within individuals of a population.  相似文献   

8.
Huber DJ  Lee JH 《Plant physiology》1988,87(3):592-597
Isolated cell wall from tomato (Lycopersicon esculentum Mill. cv Rutgers) fruit released polymeric (degree of polymerization [DP] > 8), oligomeric, and monomeric uronic acids in a reaction mediated by bound polygalacturonase (PG) (EC 3.2.1.15). Wall autolytic capacity increased with ripening, reflecting increased levels of bound PG; however, characteristic oligomeric and monomeric products were recovered from all wall isolates exhibiting net pectin release. The capacity of wall from fruit at early ripening (breaker, turning) to generate oligomeric and monomeric uronic acids was attributed to the nonuniform ripening pattern of the tomato fruit and, consequently, a locally dense distribution of enzyme in wall originating from those fruit portions at more temporally advanced stages of ripening. Artificial autolytically active wall, prepared by permitting solubilized PG to bind to enzymically inactive wall from maturegreen fruit, released products which were similar in size characteristics to those recovered from active wall isolates. Extraction of wall-bound PG using high concentrations of NaCl (1.2 molar) did not attenuate subsequent autolytic activity but greatly suppressed the production of oligomeric and monomeric products. An examination of water-soluble uronic acids recovered from ripe pericarp tissue disclosed the presence of polymeric and monomeric uronic acids but only trace quantities of oligomers. The significance in autolytic reactions of enzyme quantity and distribution and their possible relevance to in vivo pectin degradation will be discussed.  相似文献   

9.
10.
As a part of a project to develop a plant-made plague vaccine, we expressed the Yersinia pestis F1-V antigen fusion protein in tomato. We discovered that in some of these plants the expression of the f1-v gene was undetectable in leaves and fruit by ELISA, even though they had multiple copies of f1-v according to Southern-blot analysis. A likely explanation of these results is the phenomenon of RNA silencing, a group of RNA-based processes that produces sequence-specific inhibition of gene expression and may result in transgene silencing in plants. Here we report the reversion of the f1-v gene silencing in transgenic tomato plants through two different mechanisms. In the P19-dependent Reversion or Type I, the viral suppressor of gene silencing, P19, induces the reversion of gene silencing. In the P19-independent Reversion or Type II, the f1-v gene expression is restored after the substantial loss of gene copies as a consequence of transgene segregation in the progeny. The transient and stable expression of the p19 gene driven by a constitutive promoter as well as an ethanol inducible promoter induced a P19-dependent reversion of f1-v gene silencing. In particular, the second generation plant 3D1.6 had the highest P19 protein levels and correlated with the highest F1-V protein accumulation, almost a three-fold increase of F1-V protein levels in fruit than that previously reported for the non-silenced F1-V elite tomato lines. These results confirm the potential exploitation of P19 to substantially increase the expression of value-added proteins in plants.  相似文献   

11.
The CLN2 gene mutated in the fatal hereditary neurodegenerative disease late infantile neuronal ceroid lipofuscinosis encodes a lysosomal protease with tripeptidyl-peptidase I activity. To understand the enzymological properties of the protein, we purified and characterized C-terminal hexahistidine-tagged human CLN2p/tripeptidyl-peptidase I produced from insect cells transfected with a baculovirus vector. The N terminus of the secreted 66-kDa protein corresponds to residue 20 of the primary CLN2 gene translation product, indicating removal of a 19-residue signal peptide. The purified protein is enzymatically inactive; however, upon acidification, it is proteolytically processed and concomitantly acquires enzymatic activity. The N terminus of the final 46-kDa processed form (Leu196) corresponds to that of mature CLN2p/tripeptidyl-peptidase I purified from human brain. The activity of the mature enzyme is irreversibly inhibited by the serine esterase inhibitor diisopropyl fluorophosphate, which specifically and stoichiometrically reacts with CLN2p/tripeptidyl-peptidase I at Ser475, demonstrating that this residue represents the active site nucleophile. Expression of wild type and mutant proteins in CHO cells indicate that Ser475, Asp360, Asp517, but not His236 are essential for activity. These data indicate that the CLN2 gene product is synthesized as an inactive proenzyme that is autocatalytically converted to an active serine protease.  相似文献   

12.
Inactive β-fructofuranosidase molecules in senescent tomato fruit   总被引:1,自引:0,他引:1  
The present paper deals with the formation of altered molecules of β-fructofuranosidase (β-FFase, EC 3.2.1.26) in the cell wall fraction of tomato fruit in relation to aging. The monospecific antibody prepared from rabbits was used to characterize enzymes at ripened and senescent stages of tomato fruits. Although the activity on a fresh weight basis and the specific activity of the crude extract declined as the fruit aged, no difference was observed in the amount of the enzyme protein on a fr. wt basis between the two stages. With purified enzyme, there was little difference in such properties as Km, heat stability and optimum pH. However, the purified β-FFase from the senescent fruits had a lower specific activity. It is concluded from the results that the decline in the enzyme activity in the senescent fruits is due to the occurrence of immunologically active but catalytically inactive molecules of β-FFase.  相似文献   

13.
14.
15.
In a cell-free system, phi80dlac can be transcribed, and the resulting ribonucleic acid can be translated to yield a product which interacts with an enzymatically inactive z protein to produce active enzyme. The inactive z protein is produced by Escherichia coli strain 21, which contains a deletion in the first part of the gene for beta-galactosidase and appears to exist as a dimer. The enzyme formed in the cell-free system appears to be composed of one strain 21 z protein dimer and one newly synthesized polypeptide chain with a molecular weight of about 3 x 10(4). The estimated size of this complementing segment is in good agreement with Ullmann, Jacob, and Monod's estimate of the size of the alpha region of beta-galactosidase. Using alpha fragments produced by autoclaving or guanidine treatments, we found that the active portion of alpha seems to be smaller than the full alpha region. We also found, using alpha produced by the autoclaving technique, that active dimer undergoes conversion to tetramer as the amount of alpha is increased. Evidently, the binding of alpha favors this conversion, but it is unlikely that the conversion of dimer to tetramer per se results in increased enzyme activity.  相似文献   

16.
We have constructed a series of deletion mutations of the cloned Escherichia coli K-12 mtlA gene, which encodes the mannitol-specific enzyme II of the phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase system. This membrane-bound permease consists of 637 amino acid residues and is responsible for the concomitant transport and phosphorylation of D-mannitol in E. coli. Deletions into the 3' end of mtlA were constructed by exonuclease III digestion. Restriction mapping of the resultant plasmids identified several classes of deletions that lacked approximately 5% to more than 75% of the gene. Immunoblotting experiments revealed that many of these plasmids expressed proteins within the size range predicted by the restriction analyses, and all of these proteins were membrane localized, which demonstrated that none of the C-terminal half of the permease is required for membrane insertion. Functional analyses of the deletion proteins, expressed in an E. coli strain deleted for the chromosomal copy of mtlA, showed that all but one of the strains containing confirmed deletions were inactive in transport and PEP-dependent phosphorylation of mannitol, but deletions removing up to at least 117 amino acid residues from the C terminus of the permease were still active in catalyzing phospho exchange between mannitol 1-phosphate and mannitol. A deletion protein that lacked 240 residues from the C terminus of the permease was inactive in phospho exchange but still bound mannitol with high affinity. These experiments localize sites important for transport and PEP-dependent phosphorylation to the extreme C terminus of the mannitol permease, sites important for phospho exchange to between residues 377 and 519, and sites necessary for mannitol binding to the N-terminal 60% of the molecule. The results are discussed with respect to the fact that the mannitol permease consists of structurally independent N- and C-terminal domains.  相似文献   

17.
The peptide-N4-(N-acetyl-beta-D-glucosaminyl) asparagine amidase F (PNGase F) gene from Flavobacterium meningosepticum was cloned into a high copy number Escherichia coli plasmid. Levels of PNGase F activity produced in cultures of the recombinant strain were up to 100-fold higher than those obtained in cultures of F. meningosepticum. The complete PNGase F gene sequence was determined. Comparison of the predicted amino acid sequence of pre-PNGase F to the N-terminal sequence of the native mature enzyme indicates that the protein is synthesized with a 40-amino acid signal sequence that is removed during secretion in F. meningosepticum. The recombinant PNGase F produced in E. coli is a mixture of products comprised predominantly of two proteins with molecular masses of 36.3 and 36.6 kDa. These proteins have a higher apparent molecular mass than the 34.7-kDa native enzyme. N-terminal amino acid sequencing demonstrated that these higher molecular mass products result from cleavage of the pre-PNGase F in E. coli upstream of the native N terminus. The PNGase F gene was engineered to encode a preenzyme that was processed in E. coli to give an N terminus identical to that of the native enzyme. Purified preparations of this form of recombinant PNGase F were shown to be suitable for glycoprotein analyses since they possess no detectable endo-beta-N-acetylglucosaminidase F, exoglycosidase, or protease activity.  相似文献   

18.
We have investigated the expression and regulatory properties of the two alternative oxidase (Aox) proteins that are expressed in tomato (Lycopersicon esculentum L. Mill cv. Sweetie) after storage of green fruit at 4 degrees C. Four Aox genes were identified in the tomato genome, of which two (LeAox1a and LeAox1b) were demonstrated to be expressed in cold-treated fruit. The activity and regulatory properties of LeAox1a and LeAox1b were assayed after expression of each protein in yeast cells (Saccharomyces cerevisiae), proving that each is an active Aox protein. The LeAox1b protein was shown to have altered regulatory properties due to the substitution of a Ser for the highly conserved Cys(I) residue. LeAox1b could not form inactive disulfide-linked dimers and was activated by succinate instead of pyruvate. This is the first example of a dicot species expressing a natural Cys(I)/Ser isoform. The implications of the existence and expression of such Aox isoforms is discussed in the light of the hypothesised role for Aox in plant metabolism.  相似文献   

19.
Previous studies showed that the developmental program of calyces of a tomato cultivar ( Lycopersicon esculentum , cv. VFNT Cherry) changed in many aspects to that of fruit when cultured in vitro. The calyces turned red, produced ethylene, had increased tissue content of 1-aminocyclopropane-1-carboxylic acid, had increased levels of the mRNA of polygalacturonase and developed ultrastructural changes in their cell walls that were indistinguishable from those of ripe tomato fruit tissue. We report in the present study the synthesis of volatile flavor compounds, changes in sugar concentrations and color development in cultured calyces that are characteristic of ripening tomato fruit. These ripening parameters of in vitro-cultured tomato fruit were also compared to those of fruit grown in the greenhouse.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号