首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor (TNF), via its receptor 2 (TNFR2), induces Etk (or Bmx) activation and Etk-dependent endothelial cell (EC) migration and tube formation. Because TNF receptor 2 lacks an intrinsic kinase activity, we examined the kinase(s) mediating TNF-induced Etk activation. TNF induces a coordinated phosphorylation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and Etk, which is blocked by VEGFR2-specific inhibitors. In response to TNF, Etk and VEGFR2 form a complex resulting in a reciprocal activation between the two kinases. Subsequently, the downstream phosphatidylinositol 3-kinase (PI3K)-Akt signaling (but not signaling through phospholipase C-gamma) was initiated and directly led to TNF-induced EC migration, which was significantly inhibited by VEGFR2-, PI3K-, or Akt-specific inhibitors. Phosphorylation of VEGFR2 at Tyr-801 and Tyr-1175, the critical sites for VEGF-induced PI3K-Akt signaling, was not involved in TNF-mediated Akt activation. However, TNF induces phosphorylation of Etk at Tyr-566, directly mediating the recruitment of the p85 subunit of PI3K. Furthermore, TNF- but not VEGF-induced activation of VEGFR2, Akt, and EC migration are blunted in EC genetically deficient with Etk. Taken together, our data demonstrated that TNF induces transactivation between Etk and VEGFR2, and Etk directly activates PI3K-Akt angiogenic signaling independent of VEGF-induced VEGFR2-PI3K-Akt signaling pathway.  相似文献   

2.
Signaling and regulation of endothelial cell survival by angiopoietin-2   总被引:1,自引:0,他引:1  
Angiopoietins are ligands for endothelial cell-specific Tie-2 receptors. Whereas angiopoietin-1 (Ang-1) activates these receptors and promotes cell survival, migration, and sprouting, little information is available regarding how Ang-2 influences these cells. In this study, we evaluated signaling pathways and biological effects of physiological concentrations of Ang-2 in cultured human umbilical vein endothelial cells. Ang-2 at 150 and 300 ng/ml elicited a transient (reaching peak values within 15 min of exposure) increase in the phosphorylation of Tie-2 receptors, protein kinase B (Akt), ERK1/2, and p38 members of the mitogen-activated protein kinases. However, unlike Ang-1, Ang-2 significantly inhibited JNK/SAPK phosphorylation. When vascular endothelial growth factor (VEGF) was present along with Ang-2, ERK1/2 phosphorylation was inhibited, whereas augmentation of Ang-1-induced ERK1/2 phosphorylation was triggered by VEGF. Ang-2 treatment had no effect on cell migration and in vitro wound healing but significantly attenuated serum deprivation-induced apoptosis and promoted survival. These effects were completely reversed by phosphatidylinositol 3 (PI3)-kinase and ERK1/2 inhibitors but were augmented by an inhibitor of the p38 pathway. These results suggest that Ang-2 promotes endothelial cell survival through the ERK1/2 and PI3-kinase pathways and that this angiopoietin is not a strong promoter of endothelial cell migration. We also conclude that the nature of interactions in terms of ERK1/2 activation between Ang-2 and VEGF is different from that of Ang-1 and VEGF.  相似文献   

3.
Most proangiogenic factors exert their biological effects primarily by activating extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3-K)/Akt signaling pathways. These pathways appear to play a critical role in endothelial cell migration, because selective inhibition of either ERK or PI3-K/Akt signaling almost completely prevented endothelial cell migration. Recently, we demonstrated that a truncated kringle domain of human apolipoprotein(a), termed rhLK68, inhibits endothelial cell migration in vitro. However, its mechanism of action was not well defined. In this study, we determined the effects of rhLK68 on ERK1/2 and PI3-K/Akt signaling pathways to explore the molecular mechanism of rhLK68-mediated inhibition of endothelial cell migration. Treatment with rhLK68 inhibited ERK1/2 phosphorylation but did not influence Akt activation. Interestingly, an inhibitor of protein-tyrosine phosphatase, sodium orthovanadate, dose-dependently reversed both rhLK68-induced dephosphorylation of ERK1/2 and decreased migration of endothelial cells, whereas rhLK68 showed no significant effects on MEKs phosphorylation. In conclusion, these results indicate that inhibition of endothelial cell migration by rhLK68 may be achieved by interfering with ERK1/2 activation via a protein-tyrosine phosphatase-dependent pathway.  相似文献   

4.
We investigated the role of Ras in vascular endothelial growth factor (VEGF)-mediated signal transduction and the promotion of angiogenic changes primary endothelial cells. We find that VEGF potently induces Ras activation and that this step is essential for the stimulation by VEGF of several cellular changes associated with angiogenesis, including proliferation, migration, and branching morphogenesis in three-dimensional culture. Inhibition of Ras signaling induced subtle changes in the actin architecture but had no effect on the phosphatidylinositol 3-kinase (PI3K) or p38 signaling pathways. In contrast, activation of ERK was largely dependent on Ras. Although inhibiting ERK activity completely suppressed cell proliferation and partially blocked in vitro differentiation, neither ERK nor PI3K activity was required for VEGF-induced migration. These data provide the first direct demonstration that inhibition of Ras signal transduction is anti-angiogenic. Interestingly, VEGF signal transduction bifurcates both upstream and downstream of Ras, with different Ras-dependent signals controlling endothelial cell proliferation and migration, essential components of the angiogenic response.  相似文献   

5.
6.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) exerts its multiple functions by activating two receptor tyrosine kinases, Flt-1 (VEGFR-1) and KDR (VEGFR-2), both of which are selectively expressed on primary vascular endothelium. To dissect the respective signaling pathways and biological functions mediated by these receptors in primary endothelial cells with two receptors intact, we, recently developed chimeric receptors (EGDR and EGLT) in which the extracellular domain of the epidermal growth factor receptor was fused to the transmembrane domain and intracellular domain of KDR and Flt-1, respectively. With these fusion receptors, we have shown that KDR is solely responsible for VPF/VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration, whereas Flt-1 showed an inhibitory effect on KDR-mediated proliferation but not migration. To further characterize the VPF/VEGF-stimulated HUVEC proliferation and migration here, we have created several EGDR mutants by site-directed mutagenesis. We show that tyrosine residues 1059 and 951 of KDR are essential for VPF/VEGF-induced HUVEC proliferation and migration, respectively. Furthermore, the mutation of tyrosine 1059 to phenylanaline results in the complete loss of KDR/EGDR-mediated intracellular Ca(2+) mobilization and MAPK phosphorylation, but the mutation of tyrosine 951 to phenylanaline did not affect these events. Our results suggest that KDR mediates different signaling pathways for HUVEC proliferation and migration and, moreover, intracellular Ca(2+) mobilization and MAPK phosphorylation are not essential for VPF/VEGF-induced HUVEC migration.  相似文献   

7.
Extravillous trophoblast (EVT) cells of the human placenta invade the uterine decidua and utero-placental arteries to establish an efficient exchange of key molecules between maternal and fetal blood. Trophoblast invasion is stringently regulated in situ both positively and negatively by a variety of factors at the fetal-maternal interface to maintain a healthy utero-placental homeostasis. One such factor, decorin, a transforming growth factor (TGF)-beta binding, leucine-rich proteoglycan produced by the decidua, negatively regulates EVT proliferation, migration, and invasiveness independent of TGF-beta. We reported that these decorin actions were mediated by its binding to multiple tyrosine kinase receptors, including vascular endothelial growth factor receptor (VEGFR)-2. The present study explores the mechanisms underlying decorin antagonism of VEGF (VEGF-A) stimulation of endovascular differentiation of EVT using our EVT cell line, HTR-8/SVneo. We observe that decorin inhibits VEGF-induced EVT cell migration and endothelial-like tube formation on matrigel. VEGF activates MAPKs (p38 MAPK, MEK3/6, and ERK1/2) in EVT cells, and the activation is blocked in both cases by decorin. Employing selective MAPK inhibitors, we show that both p38 and ERK pathways contribute independently to VEGF-induced EVT migration and capillary-like tube formation. VEGF upregulates the vascular endothelial (VE) markers VE-cadherin and beta-catenin in EVT and endothelial cells, and this upregulation is blocked by decorin and MAPK inhibitors. These results suggest that decorin inhibits VEGF-A stimulation of trophoblast migration and endovascular differentiation by interfering with p38 MAPK and ERK1/2 activation. Thus decorin-mediated dual impediment of endovascular differentiation of the EVT and angiogenesis may have implications for pathogenesis of preeclampsia, a hypoinvasive trophoblast disorder in pregnancy.  相似文献   

8.
VEGF is a key angiogenic cytokine and a major target in anti-angiogenic therapeutic strategies. In endothelial cells (ECs), VEGF binds VEGF receptors and activates ERK1/2 through the phospholipase γ (PLCγ)-PKCα-B-Raf pathway. Our previous work suggested that influx of extracellular Ca(2+) is required for VEGF-induced ERK1/2 activation, and we hypothesized that this could occur through reverse mode (Ca(2+) in and Na(+) out) Na(+)-Ca(2+) exchange (NCX). However, the role of NCX activity in VEGF signaling and angiogenic functions of ECs had not previously been described. Here, using human umbilical vein ECs (HUVECs), we report that extracellular Ca(2+) is required for VEGF-induced ERK1/2 activation and that release of Ca(2+) from intracellular stores alone, in the absence of extracellular Ca(2+), is not sufficient to activate ERK1/2. Furthermore, inhibitors of reverse mode NCX suppressed the VEGF-induced activation of ERK1/2 in a time- and dose-dependent manner and attenuated VEGF-induced Ca(2+) transients. Knockdown of NCX1 (the main NCX isoform in HUVECs) by siRNA confirmed the pharmacological data. A panel of NCX inhibitors also significantly reduced VEGF-induced B-Raf activity and inhibited PKCα translocation to the plasma membrane and total PKC activity in situ. Finally, NCX inhibitors reduced VEGF-induced HUVEC proliferation, migration, and tubular differentiation in surrogate angiogenesis functional assays in vitro. We propose that Ca(2+) influx through reverse mode NCX is required for the activation and the targeting of PKCα to the plasma membrane, an essential step for VEGF-induced ERK1/2 phosphorylation and downstream EC functions in angiogenesis.  相似文献   

9.
The study was designed to investigate the effect of retinol binding protein (RBP)-4 on the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, which mediate the effects of insulin in vascular endothelial cells. The effects of RBP4 on nitric oxide (NO) and insulin-stimulated endothelin-1 (ET-1) secretion and on phosphorylation (p) of Akt, endothelial NO synthetase (eNOS), and extracellular signal-regulated kinase (ERK)1/2 were investigated in bovine vascular aortic endothelial cells (BAECs). RBP4 showed an acute vasodilatatory effect on aortic rings of rats within a few minutes. In BAECs, RBP4-treatment for 5 min significantly increased NO production, but inhibited insulin-stimulated ET-1 secretion. RBP4-induced NO production was not inhibited by tetraacetoxymethylester (BAPTA-AM), an intracellular calcium chelator, but was completely abolished by wortmannin, a PI3K inhibitor. RBP4 significantly increased p-Akt and p-eNOS production, and significantly inhibited p-ERK1/2 production. Triciribine, an Akt inhibitor, and wortmannin significantly inhibited RBP4-induced p-Akt and p-eNOS production. Inhibition of Akt1 by small interfering RNA decreased p-eNOS production enhanced by RBP4 in human umbilical vein endothelial cells. In conclusion, RBP4 has a robust acute effect of enhancement of NO production via stimulation of part of the PI3K/Akt/eNOS pathway and inhibition of ERK1/2 phosphorylation and insulin-induced ET-1 secretion, probably in the MAPK pathway, which results in vasodilatation.  相似文献   

10.
Vascular endothelial growth factor (VEGF) induces mild vasodilation and strong increases in microvascular permeability. Using intravital microscopy and digital integrated optical intensity image analysis, we tested, in the hamster cheek pouch microcirculation, the hypothesis that differential signaling pathways in arterioles and venules represent an in vivo regulatory mechanism in the control of vascular diameter and permeability. The experimental design involved blocking specific signaling molecules and simultaneously assessing VEGF-induced changes in arteriolar diameter and microvascular transport of FITC-Dextran 150. Inhibition of Akt [indirectly via phosphatidylinositol 3-kinase with LY-294002 or wortmannin] or PKC (with bisindolylmaleimide) reduced VEGF-induced hyperpermeability. However, phosphatidylinositol 3-kinase/Akt inhibition enhanced the early phase and attenuated the late phase of VEGF-induced vasodilation, whereas blocking PKC had no effect. Inhibition of extracellular signal-regulated kinase (ERK)-1/2 (with PD-98059 or AG-126) also reduced VEGF-induced hyperpermeability but did not block VEGF-induced vasodilation. Blockade of endothelial nitric oxide synthase (with N(omega)-monomethyl-l-arginine) inhibited VEGF-induced changes in both permeability and diameter. Furthermore, immunofluorescence studies with human umbilical vein endothelial cells revealed that bisindolylmaleimide, PD-98059, and l-NMMA attenuate VEGF-induced reorganization of vascular endothelial cadherin. Our data demonstrate that 1) endothelial nitric oxide synthase is a common convergence pathway for VEGF-induced changes in arteriolar diameter and microvascular permeability; 2) PKC and ERK-1/2 do not play a major role in VEGF-induced vasodilation in the hamster cheek pouch microcirculation; and 3) Akt, PKC, and ERK-1/2 are elements of the signaling cascade that regulates VEGF-stimulated microvascular hyperpermeability. Our data provide evidence for differential signaling as a regulatory step in VEGF-stimulated microvascular dynamics.  相似文献   

11.
12.
Human brain vascular smooth muscle cell (HBVSMC) migration contributes to angiogenesis and several pathological processes in the brain. However, the molecular mechanism of angiogenesis, in which smooth muscle cell contributes, remains unclear. Our study investigates the role of vascular endothelial growth factor (VEGF) in the HBVSMC migration and elucidates the chemotactic signaling pathway mediating this action. We used the in vitro 'scratch' wound method to detect the HBVSMC migration. VEGF(165) (1-40ng/ml) induced the HBVSMC migration in a dose-dependent manner (P<0.05). VEGF(165) does not induce HBVSMC proliferation. Wortmannin, a specific phosphatidylinositol 3-kinase (PI3K) inhibitor, significantly inhibited serine/threonine kinase Akt/protein kinase B (PKB) phosphorylation and reduced HBVSMC migration into the wound edge following VEGF(165) stimulation (P<0.05). PD98059, an extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor, also significantly inhibited ERK1/2 phosphorylation and reduced the numbers of SMC migration. Parallel distance measurement showed that VEGF(165) induced HBVSMC migration significantly reduced due to inhibition of PI3K or ERK1/2 phosphorylation (P<0.05). Our results demonstrate that VEGF(165) could induce HBVSMC migration but not proliferation in vitro. Inhibiting Akt/PKB or ERK1/2 phosphorylation could reduce VEGF(165) induced HBVSMC migration. We provide the first evidence that activation of PI3K or ERK1/2 pathways are a crucial event in VEGF(165) mediated signal transduction leading to HBVSMC migration.  相似文献   

13.
Fibroblastic proliferation accompanies many angiogenesis-related retinal and systemic diseases. Since connective tissue growth factor (CTGF) is a potent mitogen for fibrosis, extracellular matrix production, and angiogenesis, we have studied the effects and mechanism by which vascular endothelial growth factor (VEGF) regulates CTGF gene expression in retinal capillary cells. In our study, VEGF increased CTGF mRNA levels in a time- and concentration-dependent manner in bovine retinal endothelial cells and pericytes, without the need of new protein synthesis and without altering mRNA stability. VEGF activated the tyrosine receptor phosphorylation of KDR and Flt1 and increased the binding of phosphatidylinositol 3-kinase (PI3-kinase) p85 subunit to KDR and Flt1, both of which could mediate CTGF gene induction. VEGF-induced CTGF expression was mediated primarily by PI3-kinase activation, whereas PKC and ERK pathways made only minimal contributions. Furthermore, overexpression of constitutive active Akt was sufficient to induce CTGF gene expression, and inhibition of Akt activation by overexpressing dominant negative mutant of Akt abolished the VEGF-induced CTGF expression. These data suggest that VEGF can increase CTGF gene expression in bovine retinal capillary cells via KDR or Flt receptors and the activation of PI3-kinase-Akt pathway independently of PKC or Ras-ERK pathway, possibly inducing the fibrosis observed in retinal neovascular diseases.  相似文献   

14.
Emerging evidence demonstrates that high plasma C-reactive protein (CRP) levels or low plasma insulin-like growth factor 1 (IGF-1) concentrations may be separately associated with the increased risk of coronary artery disease or myocardial infarction. Interestingly, animal model studies and epidemiological investigations indicate that circulating IGF-1 and CRP levels have an inverse correlation. The present study aims to evaluate if IGF-1 can directly oppose the effects of CRP on endothelial cell (EC) activation. We found that IGF-1 rescues endothelial nitric oxide synthase activity and decreases the release of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 from ECs. We also showed that IGF-1 antagonizes the effects of CRP by activating the PI3K/Akt pathway and suppressing the JNK/c-Jun and MAPK p38/ATF2 signaling pathways, rather than inhibiting ERK1/2 activity. These findings provide evidence of the physiopathological mechanisms of endothelial activation and novel insights into the protective properties of IGF-1.  相似文献   

15.
Fibroblast growth factor-2 (FGF2) and vascular endothelial growth factor (VEGF) are two key regulators of placental angiogenesis. The potent vasodilator nitric oxide (NO) could also act as a key mediator of FGF2- and VEGF-induced angiogenesis. However, the postreceptor signaling pathways governing these FGF2- and VEGF-induced placental angiogenic responses are poorly understood. In this study, we assessed the role of endogenous NO, mitogen-activated protein kinase 3/1 (MAPK3/1), and v-akt murine thymoma viral oncogene homolog 1 (AKT1) in FGF2- and VEGF-stimulated proliferation of ovine fetoplacental endothelial (OFPAE) cells. Both FGF2 and VEGF time-dependently stimulated (P < 0.05) NO production and activated AKT1. Both FGF2- and VEGF-stimulated cell proliferation was dose-dependently inhibited (P < 0.05) by N(G)-monomethyl-L-arginine (L-NMMA; an NO synthase inhibitor), PD98059 (a selective MAPK3/1 kinase 1 and 2 [MAP2K1/2] inhibitor), or LY294002 (a selective phosphatidylinositol 3 kinase [PI3K] inhibitor) but not by phenyl-4,4,5,5 tetramethylimidazoline-1-oxyl 3-oxide (PTIO, a potent extracellular NO scavenger). At the maximal inhibitory dose without cytotoxicity, PD98059 and LY294002 completely inhibited VEGF-induced cell proliferation but only partially attenuated (P < 0.05) FGF2-induced cell proliferation. PD98059 and LY294002 also inhibited (P < 0.05) FGF2- and VEGF-induced phosphorylation of MAPK3/1 and AKT1, respectively. L-NMMA did not significantly affect FGF2- and VEGF-induced phosphorylation of either MAPK3/1 or AKT1. Thus, in OFPAE cells, both FGF2- and VEGF-stimulated cell proliferation is partly mediated via NO as an intracellular and downstream signal of MAPK3/1 and AKT1 activation. Moreover, activation of both MAP2K1/2/MAPK3/1 and PI3K/AKT1 pathways is critical for FGF2-stimulated cell proliferation, whereas activation of either one pathway is sufficient for mediating the VEGF-induced maximal cell proliferation, indicating that these two kinase pathways differentially mediate the FGF2- and VEGF-stimulated OFPAE cell proliferation.  相似文献   

16.
The migration of endothelial cells in response to various stimulating factors plays an essential role in angiogenesis. The p38 MAPK pathway has been implicated to play an important role in endothelial cell migration because inhibiting p38 MAPK activity down-regulates vascular endothelial growth factor (VEGF)-stimulated migration. Currently, the signaling components in the p38 MAPK activation pathway and especially the mechanisms responsible for p38 MAPK-regulated endothelial cell migration are not well understood. In the present study, we found that p38 MAPK activity is required for endothelial cell migration stimulated by both VEGF and nongrowth factor stimulants, sphingosine 1-phosphate and soluble vascular cell adhesion molecule. By using dominant negative forms of signaling components in the p38 MAPK pathway, we identified that a regulatory pathway consisting of MKK3-p38alpha/gamma-MAPK-activated protein kinase 2 participated in VEGF-stimulated migration. In further studies, we showed that a minimum of a 10-h treatment with SB203580 (specific p38 MAPK inhibitor) was needed to block VEGF-stimulated migration, suggesting an indirect role of p38 MAPK in this cellular event. Most interestingly, the occurrence of SB203580-induced migratory inhibition coincided with a reduction of urokinase plasminogen activator (uPA) expression. Furthermore, agents disrupting uPA and uPA receptor interaction abrogated VEGF-stimulated cell migration. These results suggest a possible association between cell migration and uPA expression. Indeed, VEGF-stimulated migration was not compromised by SB203580 in endothelial cells expressing the uPA transgene; however, VEGF-stimulated migration was inhibited by agents disrupting uPA-uPA receptor interaction. These results thus suggest that the p38 MAPK pathway participates in endothelial cell migration by regulating uPA expression.  相似文献   

17.
Vascular endothelial growth factor (VEGF) activates ERK and p38 MAPK in endothelial cells (ECs). The present study was aimed to compare its intracellular signal transduction pathways between three primary cultures of human ECs including human aortic ECs (HAECs), human umbilical vein ECs (HUVECs), and human microvascular ECs (HMVECs). VEGF activated ERK and p38 MAPK in all of three ECs. Isoforms of p38 MAPK that were activated by VEGF in HUVECs were p38-alpha and p38-delta. GF109203X, a specific inhibitor of PKC, markedly inhibited VEGF-induced activation of ERK and p38 MAPK in HAECs and HUVECs, whereas it exhibited little effect in HMVECs. In contrast, dominant negative mutant of Ha-Ras almost completely abrogated VEGF-induced activation of ERK and p38 MAPK in HMVECs. Although dominant negative mutant of Ha-Ras substantially inhibited the basal activities of ERK and p38 MAPK, it exhibited marginal effect on VEGF-induced activation of ERK and p38 MAPK in HUVECs and HAECs. The activation of Ras by VEGF appeared to be most prominent in HMVECs. These results indicate that intracellular signal transduction pathways for VEGF-induced activation of MAPKs are heterogeneous and vary depending on the origin of ECs.Copyright 2001 Wiley-Liss, Inc.  相似文献   

18.
This study was designed to determine the presence of Eph B4 or ephrin B2 in human retinal endothelial cells (REC) and their signal transduction. Human retinal endothelial cells were stimulated with an Eph B4/Fc chimera and probed for phosphorylation of phosphatidylinositol-3-kinase (PI3K), Src, and mitogen-activated protein kinase (MAPK) pathways. Proliferation and migration were investigated after Eph B4/Fc stimulation in the presence of various pathway inhibitors. Human retinal endothelial cells express ephrin B2, with little expression of Eph B4. Treatment with EphB4/Fc chimera resulted in activation of PI3K, Src, and MAPK pathways. Eph B4-stimulated endothelial cell proliferation was mediated via PI3K, nitric oxide synthase, and extracellular signal-regulated kinase 1/2 (ERK1/2). Blockade of Src-PI3K pathways produced significant attenuation of Eph B4/Fc-stimulated migration. These results demonstrate for the first time that ephrin B2 is present in human retinal endothelial cells. Additionally, it appears that vascular growth may be modulated in the retina through activation of the PI3K pathway and its downstream components.  相似文献   

19.
Vascular endothelial growth factor (VEGF) is essential for many angiogenic processes both in normal conditions and in pathological conditions. However, the signaling pathways involved in VEGF-induced angiogenesis are not well defined. Protein kinase D (PKD), a newly described serine/threonine protein kinase, has been implicated in many signal transduction pathways and in cell proliferation. We hypothesized that PKD would mediate VEGF signaling and function in endothelial cells. Here we found that VEGF rapidly and strongly stimulated PKD phosphorylation and activation in endothelial cells via VEGF receptor 2 (VEGFR2). The pharmacological inhibitors for phospholipase Cgamma (PLCgamma) and protein kinase C (PKC) significantly inhibited VEGF-induced PKD activation, suggesting the involvement of the PLCgamma/PKC pathway. In particular, PKCalpha was critical for VEGF-induced PKD activation since both overexpression of adenovirus PKCalpha dominant negative mutant and reduction of PKCalpha expression by small interfering RNA markedly inhibited VEGF-induced PKD activation. Importantly, we found that small interfering RNA knockdown of PKD and PKCalpha expression significantly attenuated ERK activation and DNA synthesis in endothelial cells by VEGF. Taken together, our results demonstrated for the first time that VEGF activates PKD via the VEGFR2/PLCgamma/PKCalpha pathway and revealed a critical role of PKD in VEGF-induced ERK signaling and endothelial cell proliferation.  相似文献   

20.
Vascular endothelial growth factor (VEGF), a potent mediator of endothelial proliferation and migration, has an important role also in brain edema formation during hypoxia and ischemia. VEGF binds to the tyrosine kinase receptors Flt-1 and Flk-1. Yet, their relative importance for hypoxia-induced hyperpermeability is not well understood. We used an in vitro blood-brain barrier (BBB) model consisting of porcine brain microvascular endothelial cells (BMEC) to determine the role of Flt-1 in VEGF-induced endothelial cell (EC) barrier dysfunction. Soluble Flt-1 abolished hypoxia/VEGF-induced hyperpermeability. Furthermore, selective antisense oligonucleotides to Flt-1, but not to Flk-1, inhibited hypoxia-induced permeability changes. Consistent with these data, addition of the receptor-specific homolog placenta-derived growth factor, which binds Flt-1 but not Flk-1, increased endothelial permeability to the same extent as VEGF, whereas adding VEGF-E, a viral VEGF molecule from the orf virus family activating Flk-1 and neuropilin-1, but not Flt-1, did not show any effect. Using the carcinoma submandibular gland cell line (CSG), only expressing Flt-1, it was demonstrated that activation of Flt-1 is sufficient to induce hyperpermeability by hypoxia and VEGF. Hyperpermeability, induced by hypoxia/VEGF, depends on activation of phosphatidylinositol 3-kinase/Akt (PI3-K/Akt), nitric oxide synthase (NOS) and protein kinase G (PKG). The activation of the PI3-K/Akt pathway by hypoxia was confirmed using an in vivo mice hypoxia model. These results demonstrate that hypoxia/VEGF-induced hyperpermeability can be mediated by activation of Flt-1 independently on the presence of Flk-1 and indicate a central role for activation of the PI3-K/Akt pathway, followed by induction of NOS and PKG activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号