首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fibrinogenolytic proteinase from the venom of Naja nigricollis was purified by chromatography on Bio-Rex 70 and Phenyl-Sepharose. The purified enzyme, designated proteinase F1, was homogeneous by the criterion of SDS-polyacrylamide gel electrophoresis, and consisted of a single chain with a molecular weight of 58 000. Purified proteinase F1 had approximately 15-fold more proteinase activity than the crude venom, based on its ability to inactive α2-macroglobulin. The enzyme acted on only the Aα-chain of fibrinogen and left the Bβ- and γ-chains intact. The pH optimum for this fibrinogenolytic activity was in the range of pH 8 to 10. In addition to its activity on fibrinogen, proteinase F1 was active on α2-macroglobulin and fibronectin, but did not degrade casein, hemoglobin or bovine serum albumin. The enzyme was not inhibited by inhibitors of serine proteinases, cysteine proteinases or acid proteinases, but only by the metalloproteinase inhibitor, EDTA. The inhibition by EDTA could be prevented by Zn2+, but not by Ca2+ or Mg2+.  相似文献   

2.
By Q-sepharose column ion-exchange chromatography, alkyl-sepharose column hydrophobic chromatography the purified fibrinogenolytic enzyme was obtained from Agkistrodon halys halys venom. It is a single peptide-chain with molecular weight about 28 kDa. It was founded that this enzyme cleaved A alpha-chain of fibrinogen, pH-optimum was determined in the range of 7.5-8.0. Its fibrinogenolytic activity was estimated 15.6 mM fibrinogen/min per mg protein; caseinolytic activity was estimated 7.5 c.u., and amidolytic activity was 0.325 mM pNA/min/mg and 0.175 mM pNA/min/mg for S2238 and S2251 respectively; K(m) was 5.6 mM. The enzyme activity was inhibited by DFP and benzamidine. These results suggest that the enzyme is serine protease. It inhibited the platelet-aggregation.  相似文献   

3.
By means of DEAE-Sephadex A-50 Column chromatography, Trimeresurus gramineus venom was separated into twelve fractions. The fibrinogenolytic activities were distributed in Fractions 1 and 10. These enzymes were further purified by gel filtration and were homogeneous as judged by cellulose acetate membrane, sodium dodecyl sulfate polyacrylamide gel electrophoresis and ultracentrifugal analysis. Both of them were single peptide chains. The sedimentation constants of alpha- (Fraction 1) and beta-fibrinogenases (Fraction 10) were 2.20 and 3.60, respectively. The molecular weights of alpha- and beta-fibrinogenases were 23 500 and 25 000 respectively. The contents of proline and glycine were higher in beta-fibrinogenase than in alpha-fibrinogenase. The isoelectric points of alpha-fibrinogenase and beta-fibrinogenase were pH greater than 10 and 4.5, respectively. The optimal pH of alpha-fibrinogenase was approx. 7.4 and that of beta-fibrinogenase was approx. 9.0. The activity of alpha-fibrinogenase was completely destroyed after 30 min at 60 degrees C, pH 5.4, 7.4 and 9.0, while that of beta-fibrinogenase was much less affected by the same treatment. The specific fibrinogenolytic activity alpha-fibrinogenase was 31 mg fibrinogen/min per mg protein, while that of beta-fibrinogenase was 9 mg fibrinogen/min per mg protein. alpha-Fibrinogenase cleaved specifically the alpha(A) chain of monomeric fibrinogen without cleaving the beta(B) chain and gamma-chain. beta-fibrinogenase preferentially cleaved the beta(B) chain, and the alpha(A) chain was also partially cleaved by beta-fibrinogenase, if the incubation time was prolonged. Both enzymes showed proteolytic activities toward fibrinogen, fibrin and casein, but were devoid of phospholipase A, alkaline phosphomonoesterase and phosphodiesterase activities found in the crude venom. The tosyl-L-arginine methylester esterase activity of beta-fibrinogenase was about 14 times that of crude venom, while alpha-fibrinogenase was completely devoid of this activity. The fibrinogenolytic activity of alpha-fibrinogenase was markedly inhibited by EDTA and cysteine, while that of beta-fibrinogenase was inhibited markedly by phenylmethanesulfonylfluoride. alpha- and beta-fibrinogenases exert their fibrinogenolytic activity by a direct action on fibrinogen or fibrin without activation of plasminogen.  相似文献   

4.
One of the fractions obtained by the carboxymethylcellulose ion-exchange chromatography of northern copperhead (Agkistrodon contortrix mokasen) venom prevented the thrombin-induced clotting of fibrinogen by proteolytically degrading the fibrinogen. The active component has been further purified to apparent electrophoretic homogeneity by molecular sieve chromatography. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis indicated a molecular weight of 22 900 +/- 600 for the purified enzyme. In addition to its fibrinogenase activity, it catalyzed the hydrolysis of hide power azure and had an intraperitoneal LD50 value in mice of less than 5.1 microgram/g body weight. The enzyme rapidly destroyed fibrinogen's ability to form clots. Electrophoresis of fibrinogen which had been incubated only a few minutes with the fibrinogenase revealed the rapid disappearance of the alpha-chain and the appearance of lower molecular weight fragments. The neutral pH optimum and ethylenediamine-tetraacetic acid (EDTA) and dithiothreitol sensitivity indicated that this enzyme belonged to the class metalloproteinases. Atomic absorption studies have revealed one zinc atom per molecule of protein. The apoenzyme's activity was restored by incubation with ZnCl2.  相似文献   

5.
A plasminogen activator enzyme (LV-PA) from Lachesis muta muta venom was purified to homogeneity using gel filtration and anion exchange chromatography. SDS-PAGE under reducing conditions showed a single protein band with an Mr of 33,000 Da. It is an acidic glycoprotein which activates plasminogen to plasmin indirectly, functioning via prior formation of a molecular complex, known as plasminogen activator. The purified preparation catalyzes the hydrolysis of several p-nitroanilide peptide substrates containing Lys at the scissile bond. In contrast, no hydrolysis was detected on the synthetic substrates TAME and BAPNA, which contain arginine. By the use of the plasmin-specific chromogenic substrate Tos-Gly-Pro-Lys-pNA, the preparation had a plasmin-like activity of 0.68 U/mg, which was 35.8-fold higher than that of the crude venom from which it was prepared. In vitro, fibrin hydrolysis using LV-PA as plasminogen activator displayed more similarity with the effect produced by streptokinase (SK). SDS-PAGE (10%) analysis showed a 115-kDa complex formation after incubation of plasminogen with either LV-PA or SK. At a molar ratio of 50:1 (fibrinogen:enzyme), the preparation exhibited weakly fibrinogenolytic activity. However, LV-PA is distinguished from thrombin in that it does not clot fibrinogen. After incubation of LV-PA with platelet-rich plasma, the enzyme (2 microM) showed no effect on platelet aggregation induced by ADP, epinephrine, or collagen. Comparison of the N-terminal sequence of LV-PA with other snake venom plasminogen activators revealed that LV-PA exhibits a high degree of sequence identity with the TsVPA from Trimeresurus stejnegeri (90%) and with the Haly-PA from Agkistrodon halys (85%). LV-PA also has homology with other snake venom serine proteinases such as the thrombin-like/gyroxin analogue (38%) from bushmaster venom and with other coagulation serine proteases. The proteinase was readily inhibited by treatment with p-nitrophenyl p-guanidinebenzoate, p-aminobenzamidine, and phenylmethanesulfonyl fluoride but was not affected by metal chelators.  相似文献   

6.
The fibrinogenolytic activity of Lachesis muta stenophyrs venom was studied. Wistar rats catheterized at carotid artery and jugular vein were inoculated with crude venom or enzyme and changes in arterial pressure, cardiac frequency and electrocardiogram were monitored. The enzyme induced a greater fibrinogen reduction than the crude venom without any cardiovascular or histological alteration. In vitro crude venom coagulated blood whereas the enzyme reduced fibrinogen in 23%. Results suggest the potential use of the fibrinogenolytic enzyme as antithrombotic agent.  相似文献   

7.
The protease from Southern Copperhead venom that activates protein C was purified to homogeneity by sulfopropyl (SP)-Sephadex C-50 ion-exchange chromatography, Sephadex G-150 gel filtration, and Mono-S fast protein liquid chromatography. The purified enzyme is a glycoprotein containing 16% carbohydrate, and migrated as a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular mass of 40,000 kDa. The enzyme is composed of a single polypeptide chain possessing an NH2-terminal sequence of Val-Ile-Gly-Gly-Asp-Glu-Cys-Asn-Ile-Asn-Glu-His. The purified venom protein C activator hydrolyzed several tripeptide p-nitroanilides. The amidolytic and proteolytic activities of the enzyme were readily inhibited by phenylmethanesulfonyl fluoride, p-amidinophenylmethanesulfonyl fluoride, chloromethyl ketones, and human antithrombin III. Covalent binding of diisopropyl fluorophosphate to the enzyme was confirmed using a tritium-labeled preparation of the inhibitor. The venom protease readily activated human and bovine protein C at 1:1000 enzyme:substrate weight ratio. The protease also cleaved human prothrombin, factor X, factor IX, factor VII, and fibrinogen. Prothrombin coagulant activity decreased upon incubation with the venom protease, and the rate of this reaction was reduced in the presence of calcium. Factor X and factor IX coagulant activity increased upon incubation with the venom protease in the presence of calcium, and decreased in the absence of calcium. Human factor VII clotting activity decreased slightly upon incubation with the venom protease. Although the venom protease did not clot human fibrinogen, it nonetheless cleaved the A alpha chain of fibrinogen, and this cleavage appeared to be associated with a measurable increase in the clottability of the protease-treated fibrinogen by thrombin. These data demonstrate that the protein C activator from Southern Copperhead venom is a typical serine protease with a relatively broad specificity.  相似文献   

8.
Gloshedobin, a thrombin-like enzyme from the venom of Gloydius shedaoensis was expressed as Hsp70 fusion protein from the construct pPIC9K/hsp70-TLE in the yeast Pichia pastoris. By fusing gloshedobin to the C-terminus of Hsp70, an expression level of 44.5 mg Hsp70-gloshedobin per liter of culture was achieved by methanol induction. The fusion protein secreted in the culture medium was conveniently purified by two chromatographic steps: Q-Sepharose FF and Superdex 200. The purified enzyme had an apparent molecular mass of 98 kDa according to SDS–PAGE analysis, and exhibited fibrinogenolytic activity that preferentially degraded fibrinogen α-chain. The enzyme also degraded fibrinogen β-chain to a lesser extent, while showing no degradation toward the γ-chain. A fibrinogen clotting activity of 499.8 U/mg was achieved by the enzyme, which is within the range reported for other thrombin-like enzymes. Hsp70-gloshedobin had strong esterase activity toward the chromogenic substrate Nα-p-tosyl-Gly-Pro-Arg-p-nitroanilide, and this activity was optimal at pH 7.5 and 50 °C, and was completely inhibited by PMSF, but not by EDTA. We concluded that Hsp70 has no effect on the physiochemical and biochemical properties of gloshedobin. Although applying a fusion partner with very big molecular weight is unusual, Hsp70 proved its advantage in soluble expression of gloshedobin without affecting its fibrinogenolytic activity. And this positive result may provide an alternative strategy for the expression of thrombin-like enzymes in microbial system.  相似文献   

9.
A thrombin-like enzyme (termed albolabrase) was isolated in purified form from the venom of Cryptelytrops albolabris (white-lipped tree viper) using high performance anion ion exchange and gel filtration chromatography. The molecular mass of albolabrase was 33.7 kDa as determined by SDS-PAGE and 35.8 kDa as determined by Superose gel filtration chromatography. The N-terminal sequence was determined to be VVGGDECNINE which is homologous to many snake venom thrombin-like enzymes. Albolabrase exhibits both arginine ester hydrolase and arginine amidase activities and the enzyme is fastidious towards tripeptide chromogenic anilide substrates. The fibrinogen clotting activity was optimum at 3 mg/mL bovine fibrinogen, and showed distinct species differences in the following decreasing order: bovine fibrinogen > dog fibrinogen ≈ human fibrinogen > goat fibrinogen. The enzyme failed to clot both rabbit and cat fibrinogens. Reversed-phase HPLC analysis on the breakdown products of fibrinogenolytic action of albolabrase indicated that the enzyme belongs to the AB class of snake venom thrombin-like enzyme. In the indirect ELISA, IgG anti-albolabrase reacted extensively with most crotalid venoms, except with Tropidolaemus wagleri and Calloselasma rhodostoma venoms. The double sandwich ELISA, however, showed that anti-albolabrase reacted strongly only with venoms from the Trimeresurus complex, and that the results support the proposed new taxonomy changes concerning the Trimeresurus complex.  相似文献   

10.
Microbial fibrinogenolytic serine proteases find therapeutic applications in the treatment of thrombosis- and hyperfibrinogenemia-associated disorders. However, analysis of structure–function properties of an enzyme is utmost important before its commercial application. In this study, an attempt has been made to understand the structure of a fibrinogenolytic protease enzyme, “Bacifrinase” from Bacillus cereus strain AB01. From the molecular dynamics trajectory analysis, the modelled three-dimensional structure of the protease was found to be stable and the presence of a catalytic triad made up of Asp102, His83 and Ser195 suggests that it is a serine protease. To understand the mechanism of enzyme–substrate and enzyme–inhibitor interactions, the equilibrated protein was docked with human fibrinogen (the physiological substrate of this enzyme), human thrombin and with ten selective protease inhibitors. The Bacifrinase–chymostatin interaction was the strongest among the selected protease inhibitors. The serine protease inhibitor phenyl methane sulphonyl fluoride was found to interact with the Ser134 residue of Bacifrinase. Furthermore, protein–protein docking study revealed the fibrinogenolytic property of Bacifrinase and its interaction with Aα-, Bβ- and Cγ-chains human fibrinogen to a different extent. However, biochemical analysis showed that Bacifrinase did not hydrolyse the γ-chain of fibrinogen. The in silico and spectrofluorometric studies also showed interaction of Bacifrinase with thrombin as well as fibrinogen with a Kd value of 16.5 and .81 nM, respectively. Our findings have shed light on the salient structural features of Bacifrinase and confirm that it is a fibrinogenolytic serine protease.  相似文献   

11.
A novel fibrinogenolytic protease was purified from Bacteroides fragilis strain YCH46. The protease was extracted from cells by ultrasonic treatment and was purified 425-fold with a recovery of 2.1% by sequential procedures using azocasein as a substrate. The purified protease showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an estimated molecular weight of 100 kDa, which was consistent with the value obtained by gel filtration, indicating a monomeric native structure. Its optimal pH, Km, and Vmax for azocasein were 7.5, 0.2%, and 286 U/min/mg, respectively. The protease activity was completely inhibited by addition of 1 mM Hg2+, Cu2+, Zn2+, diisopropyl fluorophosphate, N-ethylmaleimide or p-chloromercuribenzoate but not by the inhibitors of metalloprotease or aspartic protease, suggesting that the enzyme is a serine-thiol-like protease. The protease hydrolyzed azocasein, casein, fibrinogen, gelatin, and azocoll, but not bovine serum albumin, ovalbumin, fibrin, fibronectin, immunoglobulins, transferrin, hemoglobin or types I, III, and IV collagen. The enzyme also hydrolyzed the chromogenic substrates alanyl-alanine p-nitroanilide, L -valyl-alanine p-nitroanilide, alanyl-alanyl-valyl-alanine p-nitroanilide, and glycyl-proline p-nitroanilide, but was inert toward L -alanine p-nitroanilide, alanyl-alanyl-alanine p-nitroanilide, and N-α-benzoyl-DL -arginine p-nitroanilide. The protease completely hydrolyzed the α-chain of fibrinogen at 37 C within 10 hr and at the same time the time required for clotting of protease-treated fibrinogen by thrombin was prolonged. The fibrinogenolytic activity of a crude extract of B. fragilis was stronger than that of other species of the Bacteroides fragilis group tested: B. ovatus, B. distasonis, B. eggerthii, B. uniformis, and B. thetaiotaomicron. These results suggest that the fibrinogenolytic protease is an important biological factor in Bacteroides infection.  相似文献   

12.
眼镜蛇毒纤维蛋白原溶解因子的纯化及理化性质的研究   总被引:7,自引:0,他引:7  
经Heparin-SepharoseCL-6B亲和层析和SephadexG-150分子筛层析,从中国眼镜蛇毒(Najanajaatra)中纯化出一种可水解纤维蛋白原Aα链的蛋白酶——组分F.SDS-PAGE测得分子量为47100,为一含2%中性己糖的单肽链糖蛋白;它对纤维蛋白、酪蛋白和苯甲酰-L-精氨酸乙酯(BAEE)均无水解作用,也无激活纤溶酶原的作用;100μg皮下或皮内注射,未见出血反应。组分F对酸和热均不稳定。EDTA,EGTA,PMSF和肝素等可抑制其纤维蛋白原溶解活性,benzami-dine,aprotinin和大豆胰蛋白酶抑制因子(SBTI)则无抑制作用。  相似文献   

13.
A technique using an optical instrument, a reflectometer, for quantitative determination of proteinase activity in microliter samples of complex serum-like fluids, e.g., crevicular exudate from single sites, was developed. The technique allowed the use of various proteins as enzyme substrate. The reflectometer measures the mass of a layer, such as protein, adsorbed to a reflecting surface. This is done by measuring the reflected light intensity of the p-polarized light beam on a surface. We used methylized silicon surfaces that were coated with fibrinogen, alpha 2-macroglobulin, or hemoglobin as enzyme substrates. The test solution was incubated overnight in a basin made in an agar gel applied on the top of the protein-coated surface. In 82 exudates from periodontitis sites, with pocket depths greater than or equal to 6 mm, fibrinogenolytic activity corresponding to 1 microgram ml-1 of trypsin and pronase P was found in 20% of the samples.  相似文献   

14.
以前从菜花烙铁头蛇毒中分离纯化到Jerdonitin。与其他Ⅱ型蛇毒金属蛋白酶相比,Jerdonitin由金属蛋白酶和去整合素两个结构域组成。但没有检测到其出血和纤维蛋白原降解活性,推测可能高压液相色谱的有机溶液影响了其酶活性。采用不含高压液相色谱柱层析的新分离手段分离得到Jerdonitin。Jerdonitin在还原和非还原SDS—PAGE电泳中分别呈现一条表观分子量为38和36kDa的条带。像其他典型的蛇毒金属蛋白酶一样,Jerdonitin优先降解人纤维蛋白原的alpha链,并且该活性能被EDTA完全抑制,而PMSF对其没有影响。Jerdonitin不诱导小白鼠皮下出血。  相似文献   

15.
In the presence of intact Hymenolepis diminuta, trypsin was inactivated; intact worms had no apparent effect on subtilisin, pepsin, or papain. Inactivation of trypsin was demonstrable using azoalbumin as a substrate, but the inactivated enzyme retained full catalytic activity against benzoyl-DL-arginine-p-nitroanilide, p-tosyl-L-arginine methyl ester (low molecular weight synthetic trypsin substrates) and p-nitro-p-guanidinobenzoate (an active site titrant). Inactivation was not reversible under conditions of heating, freezing and thawing, or prolonged dialysis of the enzyme. Analyses of inactivated 3H-trypsin by cationic and SDS-polyacrylamide gel electrophoresis, and gel chromatography failed to indicate the presence of a high molecular weight trypsin inhibitor associated with the inactivated enzyme; no low molecular weight, dissociable inhibitor was demonstrable following thermal denaturation of the inactivated enzyme. Analyses of trypsin after incubation in the presence of pulse-labeled worms also failed to demonstrate the presence of any inhibitor of worm origin associated with the inactivated enzyme. The data suggest that inactivation is the result of a small structural or conformational change in the enzyme molecule, a change which partially (rather than totally) inactivates the enzyme towards protein substrates.  相似文献   

16.
A protease from the venom of the Southern Copperhead snake (Agkistrodon contortrix contortrix) that activates protein C was purified to homogeneity by a combination of sulfopropyl (SP)-Sephadex C-50, Sephadex G-150 and Mono-S column chromatography. The purified enzyme is a glycoprotein, and migrated as a single band in sodium dodecylsulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 37,000 under non-reducing conditions. Upon reduction with 2-mercaptoethanol, the enzyme exhibited a Mr of 40,000. The purified enzyme prolonged the clotting time of human plasma in a dose- and temperature-dependent manner. Purified bovine protein C was completely activated within 10 minutes upon incubation with the purified protease at a 1:500 enzyme: substrate ratio. This reaction was markedly inhibited by calcium ions. The purified venom protein C activator had no effect on human fibrinogen.  相似文献   

17.
By means of CM-Sephadex C-50 column chromatography, gel-filtration on sephadex G-75 and Sephacryl S-200 columns, a purified fibrinogenase, kistomin, was obtained from venom of Agkistrodon rhodostoma. It was a single peptide-chain with a molecular mass of about 21,800 Da containing about 202 amino-acid residues as revealed by amino acid analysis. Kistomin preferentially cleaved A alpha- and subsequently the gamma-chain of fibrinogen, leaving the B beta-chain unaffected. Its fibrinogenolytic activity was estimated to be 36.6 +/- 4.5 mg/min per mg protein and was inhibited by the pretreatment of EDTA, suggesting that it is a metalloproteinase. Its fibrinogenolytic activity in platelet-poor plasma is much less potent as compared to that in purified fibrinogen solution. It inhibited ristocetin-induced aggregation of human platelets in a dose-dependent manner in the presence of von Willebrand factor.  相似文献   

18.
通过蛋白层析从中华眼镜蛇毒中分离纯化出一个新的纤维蛋白原水解酶atrase A. Atrase A是一个分子量为64.6 kD,等电点为pH 9.6和中性糖含量为4.16%的碱性单链糖蛋白.它具有弱的纤维蛋白原α链水解活性.该活性能被金属螯合剂EDTA, EGTA,1,10 phenanthroline和还原剂DTT完全抑制,而PMSF只能部分抑制该活性,大豆胰蛋白酶抑制剂对其没有影响, 表明atrase A属于金属蛋白酶. Atrase A具有水肿活性和金黄色葡萄球菌抑制活性.它对A549 和K562 细胞没有细胞毒性,但能使贴壁生长的A549细胞解离悬浮. Atrase A没有纤维蛋白、azocasein 、BAEE水解活性,对ADP、胶原诱导的血小板聚集没有明确的抑制作用. 经小鼠皮下注射后没有发现其有出血毒活性.  相似文献   

19.
Snake venoms of the Viperidae family contain a numberof proteins that cause hemostatic disturbances. Enveno-mation of this family is characterized by hemorrhage,edema, local tissue damage, myonecrosis, fibrinolytic andkinin releasing activities [1]. In southeastern Brazil, theviper Bothrops jararaca (Viperidae) is responsible for 90%of snakebite accidents [2]. The enzymes that have proteolytic, coagulate andhemorraghic activities can activate or interfere withthe process of coagulation, and…  相似文献   

20.
A fibrinogenolytic toxin of molecular weight 6.5 kDa has been purified from the venom of Indian monocled cobra (Naja kaouthia) by repeated cation exchange chromatography on CM-sephadex C-50. The purified toxin did not show any phospholipase activity but was mildly hemolytic on human erythrocytes. This toxin, called Lahirin, cleaved fibrinogen in a dose- and time-dependent manner. The digestion process apparently started with the A alpha chain, and gradually other lower-molecular-weight chains were also cleaved to low-molecular-weight peptides. The fibrinolytic activity was completely lost after treatment with ethylene di-amine tetra acetic acid (EDTA). However, exposure to 100 degree C for 1 min or pre-treatment with phenyl methyl sulfonyl fluoride (PMSF) did not affect the fibrinolytic activity. Cleavage of di-sulphide bonds by beta-mercaptoethanol or unfolding the protein with 4 M urea caused complete loss of activity of pure Lahirin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号