首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyoma virus strain with enhanced synthesis of capsid protein.   总被引:4,自引:4,他引:0       下载免费PDF全文
A study of the immunochemical characteristics and the synthesis of the capsid proteins of two polyoma virus strains (3049 and 1pS) was carried out to determine the mechanism responsible for the unique accumulation of those structural polypeptides in the cytoplasm of cells infected with the 3049 strain. Antisera prepared against disaggregated virus peptides and whole virus were used to measure the quantity of virus-specific antigens in cells infected by the two strains by using an indirect radioimmunoassay technique. The 3049-infected mouse embryo cells were found to contain several-fold more antibody-binding material than those infected with the 1pS strain. Furthermore, the cytoplasmic fraction of 3049-infected cells also contained more antibody-binding activity, supporting the hypothesis that the phenotype of the 3049 virus (cytoplasmic capsid protein) was a reflection of the increased synthesis of the capsid polypeptides.  相似文献   

2.
The major capsid protein of polyomavirus, VP1, was separated into at least four subspecies by isoelectric focusing. One of these subspecies was selectively extracted from purified virions by mild treatment with sodium dodecyl sulfate, leaving a 140S particle enriched in the other three forms. The two most acidic subspecies were labeled in vivo with [32P]phosphate, and these subspecies are among those identified as being deficient in nontransforming host range (hr-t) mutant virus nonpermissive infection of NIH3T3 cells. Quantitation of VP1 phosphorylation revealed that hr-t mutant virus VP1 is phosphorylated to about 40 to 50% the level of the wild type in NIH3T3 cells, and two-dimensional phosphoamino acid analysis suggested that threonine phosphorylation was affected more than serine phosphorylation. Two results indicate that the VP1 modifications occur before and independent of virus assembly: modified subspecies were detected during wild-type infection within a 2-min pulse-label with [32S]methionine, and VP1 modifications of temperature-sensitive VP1 mutants were the same at both restrictive and permissive temperatures for virus assembly. We conclude that most VP1 modification occurs before viral DNA encapsidation, and that one defect in hr-t mutant virus assembly is in VP1 phosphorylation, primarily affecting threonine.  相似文献   

3.
Two plaque morphology variants of polyoma virus (A-2 and 208) showed marked differences in agarose gel electrophoresis of the whole particles, isoelectric focusing of the major capsid protein VP1 (45,000 daltons) and three tryptic peptides (A, B and C) of VP1. No major difference in apparent molecular weight on NaDodSO4 gels, amino acid composition or carbohydrate detectable by Schiff staining was revealed between the capsid proteins of the two viruses.Correlations have been made between phenotype, portions of the primary amino acid sequence of VP1 and the physical map of polyoma virus DNA by analysis of this protein from large plaque A-2 virus, minute plaque 208 virus and large plaque 208 virus selected after marker rescue with a fragment of polyoma virus DNA generated by the Hpa II restriction enzyme. The interrelationship of these properties was established by taking advantage of the observations of Miller, Cooke and Fried (1976)that heterozygous markers present on heteroduplex DNA are found in 100% of selected progeny and in only 50% of unselected progeny.All five marker rescued isolates selected for large plaque morphology showed only two A-2-specific characters, the absence of peptide C in tryptic maps of VP1 and the aggregation of VP1 on isoelectric focusing. The other four characters which distinguish A-2 and 208 were present or absent in 40–60% of the five isolates, which is close to the expected 50% for unselected markers. Three of the four A-2-specific characters (the presence of peptide A, absence of peptide B and isoelectric point of VP1) have been found to occur coordinately in the marker rescued isolates. The fourth character (electrophoretic mobility of virus particles in agarose gels) segregated independently.The techniques used in this study should find wide application in correlating primary amino acid sequence, nucleotide sequence and phenotype in other systems.  相似文献   

4.
The structural proteins of the budgerigar fledgling disease virus, the first known nonmammalian polyomavirus, were analyzed by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major capsid protein VP1 was found to be composed of at least five distinct species having isoelectric points ranging from pH 6.45 to 5.85. By analogy with the murine polyomavirus, these species apparently result from different modifications of an initial translation product. Primary chicken embryo cells were infected in the presence of 32Pi to determine whether the virus structural proteins were modified by phosphorylation. SDS-PAGE of the purified virus structural proteins demonstrated that VP1 (along with both minor capsid proteins) was phosphorylated. Two-dimensional analysis of the radiolabeled virus showed phosphorylation of only the two most acidic isoelectric species of VP1, indicating that this posttranslational modification contributes to VP1 species heterogeneity. Phosphoamino acid analysis of 32P-labeled VP1 revealed that phosphoserine is the only phosphoamino acid present in the VP1 protein.  相似文献   

5.
The structural proteins of three mutants of simian virus 40 (SV40) which differ in plaque size, temperature sensitivity, oncogenicity, host cell restriction, and immunological properties were studied. The polypeptide components of these SV40 strains could not be distinguished by their polyacrylamide gel electrophoretic patterns. When the dissociated virions of two of the mutants were analyzed by the isoelectric focusing technique in a urea gradient, the capsid protein peaks were found to differ significantly in their isoelectric points. The capsid protein of the small-plaque mutant had an isoelectric point of pH 6.51 as compared with pH 6.28 for the large-plaque strain. Isoelectric focusing of the isolated capsid protein revealed three components, a single major subunit and two minor forms. The coat proteins of two of the mutants, small-plaque and minute-plaque strains, were indistinguishable by this technique. The capsid protein peaks obtained by isoelectric focusing were further analyzed by polyacryalmide gel electrophoresis.  相似文献   

6.
We have expression-cloned in Escherichia coli the major polyoma virus capsid protein, VP1. Under the inducible control of the hybrid tac promoter, VP1 constituted between 2 and 3% of the total host cell protein. The expressed VP1 was purified to near homogeneity with initial yields to 10%. Optimal expression was temperature-dependent, and significant intracellular degradation could be demonstrated. The final product was obtained as one predominant isoelectric focusing species, without the pattern of post-translational modification seen in virus-infected eukaryotic cells. The purified VP1 from E. coli will be useful as a substrate for the purification of VP1 modification enzymes and in the study of inter-VP1 oligomerization.  相似文献   

7.
C Wychowski  S van der Werf  M Girard 《Gene》1985,37(1-3):63-71
The poliovirus cDNA fragment coding for capsid polypeptide VP1 was inserted between the EcoRI and BamHI sites of SV40 DNA, generating a chimaeric gene in which the sequence of the 302 amino acids (aa) of poliovirus capsid polypeptide VP1 was placed downstream from that of the 94 N-terminal aa of SV40 capsid polypeptide VP1. The resulting defective, hybrid virus, SV40-delta 1 polio, was propagated in CV1 cells using an early SV40 mutant, am404, as a helper. Cells doubly infected by SV40-delta 1 polio and am404 expressed a 50-kDal fusion protein which was specifically immunoprecipitated by polyclonal and/or monoclonal antibodies raised against poliovirus capsids or against poliovirus polypeptide VP1. Examination of the infected cells by immunofluorescence after staining with anti-poliovirus VP1 immune sera revealed that the fusion protein was mostly located in the intra- and perinuclear space of the cells, in contrast to the exclusively intracytoplasmic location of genuine poliovirus VP1 polypeptide that was observed in poliovirus-infected cells. This suggests that the N-terminal part of the SV40-VP1 polypeptide could contain an important sequence element acting as a migration signal for the transport of proteins from the cytoplasm to the nucleus.  相似文献   

8.
Cricket paralysis virus purified from Galleria mellonella larvae was shown to be similar to virus purified from Drosophila melanogaster cells. Cricket paralysis virus contained three major structural polypeptides of similar molecular weight (around 30,000), had a buoyant density of 1.344 g/ml, and had a capsid diameter of 27 nm. Twenty virus-induced polypeptides could be detected in CrPV-infected Drosophila cells. Two major polypeptides found in the infected cells corresponded to two structural viral polypeptides (VP1 and VP3), whereas the third major intracellular polypeptide was the apparent precursor of the third viral structural polypeptide (VP2). Three of the primary virus-induced polypeptides had molecular weights of 144,000, 124,000, and 115,000. These and other polypeptides were chased into lower-molecular-weight proteins when excess cold methionine was added after a short [35S]methionine pulse. Although cricket paralysis virus has a number of characteristics in common with the mammalian enteroviruses, the extremely fast processing of high-molecular-weight polypeptides into viral proteins seems atypical. Also, no VP4 (8,000 to 10,000 molecular weight) has been found in the virus particles.  相似文献   

9.
The structural proteins of polyoma virions and capsids were analyzed by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Polyoma virion VP1 was found to be composed of six distinct species which had pI's between pH 6.75 and 5.75. Polyoma capsid VP1 was found to contain four species with pI's between pH 6.60 and 5.75. The different forms of virion and capsid VP1 appeared to be generated by modifications (phosphorylation and acetylation) of the initial translation product. The most basic of the virion VP1 species (pI, pH 6.75) was absent in capsids and was found to be exclusively associated with the viral nucleoprotein complex. Three of the virion VP1 species and three of the capsid VP1 species were found in capsomere preparations enriched for hexon subunits. Two VP1 species were specifically immune precipitated from virions with hemagglutination-inhibiting antibodies. These two VP1 species were common to both virions and capsids. Polyoma virions, but not capsids, possessed a single VP1 species which was immune precipitated with neutralizing antibodies. Both virion and capsid VP2 were found to have pI's of approximately pH 5.50. Virion VP3 had a pI of approximately pH 7.00, whereas capsid VP3 had a pI of approximately pH 6.50.  相似文献   

10.
A mutation in polyoma virus strain 3049 which results in the overproduction of capsid proteins has been mapped to the late region of the genome between the HindIII site at 45.0 map units and the BamHI site at 58.6 map units. This region contains the coding sequence for VP3 and a portion of VP2, but does not include the late promoters or the coding sequence for the late leaders. The possible role of VP2 or VP3 in the regulation of genetic expression in polyoma virus is discussed.  相似文献   

11.
Adult diarrhea rotavirus (ADRV) is a newly identified strain of noncultivable human group B rotavirus that has been epidemic in the People's Republic of China since 1982. We have used sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western (immuno-) blot analysis to examine the viral proteins present in the outer and inner capsids of ADRV and compared these with the proteins of a group A rotavirus, SA11. EDTA treatment of double-shelled virions removed the outer capsid and resulted in the loss of three polypeptides of 64, 61, and 41, kilodaltons (kDa). Endo-beta-N-acetylglucosaminidase H digestion of double-shelled virions identified the 41-kDa polypeptide as a glycoprotein. CaCl2 treatment of single-shelled particles removed the inner capsid and resulted in the loss of one polypeptide with a molecular mass of 47 kDa. The remaining core particle had two major structural proteins of 136 and 113 kDa. All of the proteins visualized on sodium dodecyl sulfate-polyacrylamide gel electrophoresis were antigenic by Western blot analysis when probed with convalescent-phase human and animal antisera. A 47-kDa polypeptide was most abundant and was strongly immunoreactive with human sera, animal sera raised against ADRV and against other group B animal rotaviruses (infectious diarrhea of infant rat virus, bovine and porcine group B rotavirus, and bovine enteric syncytial virus) and a monoclonal antibody prepared against infectious diarrhea of infant rat virus. This 47-kDa inner capsid polypeptide contains a common group B antigen and is similar to the VP6 of the group A rotaviruses. Human convalescent-phase sera also responded to a 41-kDa polypeptide of the outer capsid that seems similar to the VP7 of group A rotavirus. Other polypeptides have been given tentative designations on the basis of similarities to the control preparation of SA11, including a 136-kDa polypeptide designated VP1, a 113-kDa polypeptide designated VP2, 64- and 61-kDa polypeptides designated VP5 and VP5a, and several proteins in the 110- to 72-kDa range that may be VP3, VP4, or related proteins. The lack of cross-reactivity on Western blots between antisera to group A versus group B rotaviruses confirmed that these viruses are antigenically quite distinct.  相似文献   

12.
Theiler's murine encephalomyelitis viruses (TMEV) are separable into two groups based on their biological behavior: those highly virulent isolates which are unable to cause persistent infection and the less virulent isolates which regularly produce persistent central nervous system infection in mice. Two highly virulent and five less virulent TMEV were found to have the same buoyant density (1.34 g/ml) on isopycnic centrifugation and virion structure by electron microscopy. Negatively stained virus particles purified in Cs(2)SO(4) gradients appeared to have icosahedral symmetry and measured 28 nm in diameter. Mature virions were found to possess three major structural polypeptides, VP1, VP2 and VP3, in the range of 25,000 to 35,000 daltons, and a smaller fourth major polypeptide, VP4, of 6,000 daltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The precursor of VP2 and VP4, VP0, which is a minor polypeptide of mature picornavirus particles, was also identified. However, a slight but consistent difference in several of the capsid polypeptides between the highly virulent and less virulent TMEV was found. VP1 was slightly larger (34,000 versus 33,500 daltons) and VP2 was slightly smaller (31,000 versus 32,000 daltons) for the highly virulent strains compared to the same polypeptide species in the less virulent viruses. VP0 was also slightly smaller (35,500 versus 36,000 daltons) for the highly virulent isolates compared to their less virulent counterparts. Finally, trypsin which was used initially in our purification procedure resulted in preferential cleavage of a 2,000-molecular-weight fragment or fragments from VP1 of only the less virulent isolates.  相似文献   

13.
VP23 is a key component of the triplex structure. The triplex, which is unique to herpesviruses, is a complex of three proteins, two molecules of VP23 which interact with a single molecule of VP19C. This structure is important for shell accretion and stability of the protein coat. Previous studies utilized a random transposition mutagenesis approach to identify functional domains of the triplex proteins. In this study, we expand on those findings to determine the key amino acids of VP23 that are required for triplex formation. Using alanine-scanning mutagenesis, we have made mutations in 79 of 318 residues of the VP23 polypeptide. These mutations were screened for function both in the yeast two-hybrid assay for interaction with VP19C and in a genetic complementation assay for the ability to support the replication of a VP23 null mutant virus. These assays identified a number of amino acids that, when altered, abolish VP23 function. Abrogation of virus assembly by a single-amino-acid change bodes well for future development of small-molecule inhibitors of this process. In addition, a number of mutations which localized to a C-terminal region of VP23 (amino acids 205 to 241) were still able to interact with VP19C but were lethal for virus replication when introduced into the herpes simplex virus 1 (HSV-1) KOS genome. The phenotype of many of these mutant viruses was the accumulation of large open capsid shells. This is the first demonstration of capsid shell accumulation in the presence of a lethal VP23 mutation. These data thus identify a new domain of VP23 that is required for or regulates capsid shell closure during virus assembly.  相似文献   

14.
A child was found to be excreting type 1 vaccine-derived poliovirus (VDPV) with a 1.1% sequence drift from Sabin type 1 vaccine strain in the VP1 coding region 6 months after he was immunized with oral live polio vaccine. Seventeen type 1 poliovirus isolates were recovered from stools taken from this child during the following 4 months. Contrary to expectation, the child was not deficient in humoral immunity and showed high levels of serum neutralization against poliovirus. Selected virus isolates were characterized in terms of their antigenic properties, virulence in transgenic mice, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin type 1 strain. The VDPV isolates showed mutations at key nucleotide positions that correlated with the observed reversion to biological properties typical of wild polioviruses. A number of capsid mutations mapped at known antigenic sites leading to changes in the viral antigenic structure. Estimates of sequence evolution based on the accumulation of nucleotide changes in the VP1 coding region detected a "defective" molecular clock running at an apparent faster speed of 2.05% nucleotide changes per year versus 1% shown in previous studies. Remarkably, when compared to several type 1 VDPV strains of different origins, isolates from this child showed a much higher proportion of nonsynonymous versus synonymous nucleotide changes in the capsid coding region. This anomaly could explain the high VP1 sequence drift found and the ability of these virus strains to replicate in the gut for a longer period than expected.  相似文献   

15.
正Dear Editor,Previous studies had described the adaptation of enterovirus 71 (EV-A71) strains that enabled entry and viral replication in Chinese Hamster Ovary (CHO) cell line(Zaini and Mc Minn 2012; Zaini et al. 2012). These adapted  相似文献   

16.
P Z O'Farrell  H M Goodman 《Cell》1976,9(2):289-298
The major capsid protein (VP1) of simian virus 40 (SV40) has been analyzed by two-dimensional electrophoresis. This system separates protein according to isoelectric point by isoelectric-focusing, and according to molecular weight by sodium dodecylsulphate electrophoresis (O'Farrell, 1975). VP1 synthesis in infected CV-1 cells can be monitored directly by analysis of unfractionated whole cell extracts; the resolution of VP1 from cellular proteins allows its detection as early as 13 hr after infection. The two-dimensional separation of VP1 reveals that it is heterogeneous, consisting of one major protein (molecular weight 47,000 daltons and isoelectric point of approximately pH 6.8) and five minor protein components. The minor forms of VP1 are 10% of the total VP1 and differ from the major form of VP1 both in molecular weight (by approximately 500 daltons) and isoelectric point (ranging from approximately pH 6.7 to pH 6.9). Evidence is presented to show that two of the minor forms are phosphorylated derivatives of VP1, and it is further suggested that all the different forms of VP1 are the result of modifications of the primary product of translation. A temperature-sensitive mutant of the BC complementation group (BC11) of SV40 results in the synthesis of VP1 with an altered electrophoretic mobility; both the major form of VP1 and the minor forms are shifted in their isoelectric points. In addition to the specific case of SV40, two aspects of these studies should be generally significant to investigators studying eucaryotic gene expression by two-dimensional gel electrophoresis: first, the genetic origin of a protein can be determined by a temperature-sensitive mutation which causes a charge change in the resultant protein; and second, two or more protein spots on a two-dimensional separation may be the products of a single gene.  相似文献   

17.
The structural polypeptides of foot-and-mouth disease virus were analyzed by electrofocusing in a polyacrylamide gel containing 9 M urea. Three versions of the technique were used to accomodate the widely differing isoelectric points of the four polypeptides. VP2 was identified by comparing mature virus with procapsids. The selective actions of proteases on virions of two serotypes and on their 12S particles were examined. From this emerged a simple test for distinguishing the similarly sized polypeptides: VP1, VP2, and VP3. The effects of carbamylation and succinylation on the charge of the polypeptides were investigated. From the properties of polypeptides modified either chemically or by mutation, it was concluded that all amino acid substitutions that might be expected to cause a charge change would be detected except for neutral-to-histidine substitutions in the most basic polypeptide, VP1. In a sample of 73 temperature-sensitive mutants, 11 classes of variant polypeptides were distinguished on the basis of charge. Their molecular weights were unchanged. Alterations were found in all structural polypeptides except VP4. Mutations affecting VP2 caused similar shifts in the precursor, VP0.  相似文献   

18.
An antigenic determinant common to the major capsid polypeptide (VP1) of simian virus 40 (SV40) and polyoma virus is described. Antisera prepared against intact viral particles reacted only with cells infected with the homologous virus by immunofluorescence tests (IF). However, antisera prepared against disrupted SV40 particles reacted in IF with both polyoma- and SV40-infected permissive cells. The cross-reaction with polyoma was localized to VP1 by the following evidence. (i) The IF cross-reaction was inhibited by preincubation of the antiserum with purified SV40 VP1; (ii) purified radiolabeled polyoma VP1 was precipitated by the cross-reactive serum, and this reaction was inhibited by unlabeled SV40 VP1; (iii) other antisera prepared against purified SV40 VP1 or polyoma VP1 reacted in IF with both SV40- and polyma-infected permissive cells. These cross-reacting antisera also reacted in IF with permissive cells infected with BK virus, rabbit kidney vacuolating virus, and the stumptailed macaque virus, suggesting that all members of the polyoma-SV40 subgroup share a common antigenic determinant located in their major capsid polypeptides.  相似文献   

19.
Abstract— Brain tubulin subunits were separated by a combination of isoelectric focusing and electrophoresis in the presence of sodium dodecyl sulfate (SDS) using a two-dimensional polyacrylamide slab gel technique. Isoelectric focusing separated tubulin subunits into two major groups of bands, such that the more acidic group corresponded to the α subunit and the less acidic group corresponded to the β subunit. In addition, isoelectric focusing resolved the β subunit into two subspecies which differed slightly in isoelectric properties but were the same apparent molecular weight. The a subunit was resolved into many subspecies that appear to differ from each other by both apparent molecular weight and isoelectric properties.  相似文献   

20.
Proliferative T-cell responses to poliovirus in various strains of mice have been analyzed by using either killed purified virus or capsid protein VP1 synthetic peptides. Following immunization of mice with inactivated poliovirus type 1 (PV1), a specific proliferative response of their lymph node CD4+ T cells was obtained after in vitro stimulation with purified virus. In mice immunized with PV1, PV2, or PV3, a strong cross-reactivity of the T-cell responses was observed after in vitro stimulation with heterologous viruses. By using various strategies, a dominant T-cell epitope was identified in the amino acid 103 to 115 region of capsid polypeptide VP1, close by the C3 neutralization epitope. The T-cell response to VP1 amino acids 103 to 115 is H-2 restricted: H-2d mice are responders, whereas H-2k and H-2b mice do not respond to this T-cell epitope. Immunization of BALB/c (H-2d) mice with the uncoupled p86-115 peptide, which represents VP1 amino acids 86 to 115 and contains both the T-cell epitope and the C3 neutralization epitope, induced poliovirus-specific B- and T-cell responses. Moreover, these mice developed poliovirus neutralizing antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号