首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and degradation of rat brain synaptosomal proteins were studied in three groups of animals: trained the behaviour pattern in the maze, "pseudo-trained" and control. These processes were assessed from protein specific radioactivity after 1, 3 days and after 1, 3, 6 and 9 weeks following intraventricular injection of 14C-lysine. The experiments showed three fractions differing in overall values of half-life (T50). An increase in specific radioactivity of brain proteins of trained animals was revealed as compared to that in "pseudo-trained" and control rats. T50 was recorded to rise for slow-metabolizing fractions of synaptosomal proteins of trained rats. Participation of synaptosomal proteins in the mechanisms of long-term memory is discussed.  相似文献   

2.
—Axonal transport of proteins in the hypothalamo-neurohypophysial system of the rat was studied after a local injection of [35S]cysteine in the region of the supraoptic nucleus. The migration of labelled proteins was followed by measuring the specific radioactivity of the proteins in various parts of the hypothalamo-neurohypophysial tract. Between 2 and 4 h after the isotope injection there was a sharp increase in the protein-bound specific radioactivity of the posterior pituitary lobe, demonstrating that a transport of 35S-labelled proteins had occurred from the supraoptic nucleus to the neurohypophysis. The rate of the transport was 2-3 mm/h. During the first 24 h after the injection a continuous accumulation of labelled material occurred in the neural lobe. Considerable radioactivity could still be recovered 6 days after the isotope injection. Fractionation of the neurohypophysial proteins by polyacrylamide gel electrophoresis revealed that approximately 90 per cent of the radioactivity of the soluble proteins was recovered in a single protein fraction. Labelling of this fraction was not observed until 2 h after isotope injection. The radioactivity increased markedly up to 4 h. It is suggested that this protein component is involved in the neurohypophysial response to osmotic stress since the protein disappeared from the posterior lobe upon dehydration of the rat.  相似文献   

3.
Histone metabolism in liver studied within 72-hour period of liver regeneration after partial hepatectomy in 24 hours after the injection of 14C-amino acids in rats. The increase in radioactivity of f2a, f3 and f2b histones and the simultaneous decrease in f1 histone radioactivity was observed in regenerating rat liver as compared with the level of radioactivity estimated for the respective histones in ectomized liver lobes. These changes, which are characteristic for regenerating liver, were not observed after the shame operation and they did not eliminate after the injection of respective unlabelled amino acid. Possible correlation between the increase in specific radioactivity of most nuclear histones under regeneration process and a migration of pre-synthesized labelled histone molecules into nucleus, and also a transformation into histones of other nuclear proteins is discussed.  相似文献   

4.
The significance of changes in rates of synthesis, export, and degradation of proteins during liver regeneration was assessed. (a) Proteins were pulse labeled by the intravenous injection of radioactive leucine and, 5 min later, pactamycin (an inhibitor of the initiation of protein synthesis). One-half of the protein radioactivity was lost from the normal liver within 3 hours. From the radioactivity of the plasma proteins at that time and a study of the disappearance of these proteins from the circulation, it was calculated that 28% of the newly synthesized proteins were exported. Serum albumin accounted for a third of the exported proteins. Thirty-six hours after partial hepatectomy the proportion of albumin to total protein synthesis remained constant, while that of the other plasma proteins increased by 50%. The fraction of the newly synthesized proteins retained by the liver after 3 hours decreased by 20%. (b) During the first 36 hours of liver regeneration the average rates of protein degradation slowed down to one-half the normal values. This was determined either by the loss of radioactivity from total protein (or the guanidino-C of protein-bound arginine) in livers labeled with [14C]bicarbonate, or calculated as the balance between protein synthesis and net protein gain. (c) From these results, and those of our previous study of the protein synthetic machinery of normal and regenerating livers (Scornik, O.A. (1974)J. Biol. Chem. 249, 3876-3883), we conclude that changes in the rate of protein degradation are the single most important factor determining the increase in protein content during liver compensatory growth.  相似文献   

5.
The turnover of classical Folch-Lees proteolipid proteins was studied after administration of [2,3-3H]tryptophan to both developing and adult rat brain. The animals were killed from 2h to 250 days after subcutaneous injections of [3H]tryptophan. The measured specific radioactivity in developing brain attained maximum value 24h after the administration of label, whereas the total radioactivity per brain reached a maximum 21 days after injection. The half-life of proteolipid protein from the measured specific radioactivity was 7-20 days, depending on the time-points used for the calculation, whereas calculation from total radioactivity between 28-77 and 91-257 days gave half-lives of 35-40 and 188 days respectively. In contrast, in animals injected at 40 days of age, the half-life from the whole-brain-radioactivity data was 188 days. The problem of the recycling of radioactivity for the synthesis of myelin proteins from either a general or a discrete amino acid pool is discussed.  相似文献   

6.
THE ORIGIN OF THE ACETYLCHOLINE RELEASED FROM THE SURFACE OF THE CORTEX   总被引:4,自引:2,他引:2  
—The specific radioactivity of acetylcholine liberated from the surface of the rabbit occipital cortex has been compared with that of the underlying cortical synaptosomal and vesicular acetylcholine at varying times after the administration of [N-Me-3H]choline. Choline was administered by diffusion from solutions placed in cups formed by Perspex cylinders applied to the surface of the cortex. Acetylcholine was collected by diffusion into these cups. The specific radioactivity of the acetylcholine declined progressively. The effect of stimulation of afferent cholinergic pathways was to cause a fall in the specific radioactivity of the released acetylcholine. However this was always higher than that of the synaptosomal or vesicular acetylcholine as represented by fractions P2 and D of the authors’fractionation scheme. It is concluded that acetylcholine released from the cortex must come from a store or stores more recently synthesized than the endogenous acetylcholine of these subcellular fractions.  相似文献   

7.
The turnover of nucleic acids and proteins in the central nervous system has been explored by autoradiography following the subarachnoid injection of tagged precursors. Nuclear PNA of neurons and oligodendrocytes becomes radioactive earlier than cytoplasmic PNA after injection of adenine-C14 and orotic-C14 acid. By 24 hours following injection, cytoplasmic PNA is radioactive. Radioactivity persists with little decrease for as long as 51 days after an injection of adenine-C14. The cells of the ependymal lining, choroidal plexus, leptomeninges, blood vessel walls, and Schwann cells also exhibit radioactivity in PNA as judged by the loss of radioactivity following ribonuclease digestion. From the 3rd day on, increasing numbers of the aforementioned cells, with the exception of nerve cells, exhibit ribonuclease-resistant nuclear radioactivity which is abolished by deoxyribonuclease. This radioactivity indicates labelling of nuclear DNA. Following the intrathecal injection of methionine-S35 and glycine-2-H3, nerve cells, oligodendrocytes, cells of ependymal lining, choroidal plexus, leptomeninges, blood vessels, and Schwann cells become radioactive. Nerve cells lose most of their radioactivity within a few hours, first from the cytoplasm and later from the nucleus. Other cell types retain their radioactivity for considerable periods of time. Although astrocytes, microglia, and satellite cells of sensory ganglia do not appear to incorporate labelled precursors into nucleic acids or proteins, reacting phagocytic microglia actively take up labelled amino acids. These results are discussed with particular reference to PNA and protein turnover in nerve cells, oligodendrocytes, and Schwann cells. It is believed that these metabolic activities in neurons are concerned in part with the elaboration of axoplasmic proteins. The nucleoprotein metabolism of oligodendrocytes and Schwann cells may be related to myelin biosynthesis both in the immature and the mature nervous system.  相似文献   

8.
Following injection of rabbit 125I-asialohemopexin, more than 90% of the protein-bound 125I was removed from the circulation of rabbits within 12 min. The amount of asialoprotein in the catabolic compartment reached a peak concentration (75 to 85%) 12 min after injection and was completely eliminated from this compartment within 2 hours. The degradation products were excreted into the urine, with 50 to 70% of the 125I eliminated during the first 24 hours and 90 to 95% excreted by 48 hours. Analysis of these data indicated an apparent first order rate constant for uptake of asialohemopexin of 0.32 min-1, for catabolism of 0.020 min-1 and for excretion of 0.054 to 0.093 hour-1. The plasma distribution curves of 125I-hemopexin, after the first 24 hours, showed essentially no difference. Both proteins were catabolized with an average T1/2 of 25 to 26 hours and a similar fractional catabolic rate. Simultaneous injection of heme and 125I-hemopexin resulted in rapid removal and catabolism of the protein. In contrast, injection of heme had little if any effect on the plasma radioactivity curve of photoinactivated 125I-hemopexin.  相似文献   

9.
Abstract: The labeling pattern of the major individual gangliosides from the microsomal and synaptosomal fractions of rat brain was determined following intracerebral injection of the radioactive sialic acid precursor, N-acetylmannosamine. Microsomal gangliosides initially had a higher specific radioactivity than synaptosomal gangliosides, with both fractions reaching similar specific radioactivities 18 h after precursor injection. In both subcellular fractions, the polysialogangliosides GT1b and GQ1b were initially more highly labeled than all other gangliosides. With the establishment of the labeling pattern, the effect of the convulsant pentylenetetrazol on brain gangliosides was examined in detail. Significant decreases in radioactive label were noted in the polysialogangliosides, GT1b and GQ1b, from the synaptosomal and microsomal fractions of the convulsed animals. The decreases may be due to activation of the membrane-bound neuraminidase present with the gangliosides in neuronal tissue. Prior to experimentation, a methodology was developed to insure quantitative isolation of small amounts of ganglioside free of other lipids and water-soluble contaminants. Combination of this isolation procedure with quantitative densitometry of thin-layer chromatograms permits accurate distributional analyses for individual gangliosides. In applications involving radioactive gangliosides, the method allows the determination of both radioactivity and sialic acid distributions from the same thin-layer chromatogram.  相似文献   

10.
Abstract— (1) The encephalitogenic basic protein obtained from adult rat brain by treatment with 0·03 N-HCl was demonstrable in the brain on the 10th day after birth. It showed a marked increase in quantity during the phase of active myelination.
(2) The proteins extracted under similar conditions from 5-day old rat brain contained several highly basic proteins other than the encephalitogenic basic protein. These basic proteins, which were electrophoretically similar to highly basic proteins extracted similarly from adult rat liver, are histones.
(3) For metabolic studies the entire group of highly basic proteins in the acid extract was obtained after one-step adsorption of other proteins on DEAE-cellulose equilibrated at pH 9·8
(4) After injection of [14C]lysine the fractions containing highly basic proteins, water soluble non-basic proteins and other tissue proteins of the brain showed higher relative specific radioactivities during the period 1–10 days after birth than during later stages of postnatal development. The fraction containing proteolipid protein, another myelin protein, showed a low relative specific radioactivity throughout the whole period of postnatal development. The relative specific radioactivity of proteolipid protein was somewhat higher in young than in adult rat brain.  相似文献   

11.
Purified myelin, isolated from rat brain, was subfractionated into light, medium and heavy myelin. The metabolism of [3H] leucine in myelin subfractions was studied at intervals from 1 to 24 hours and from 18 hours to 85 days after the injection of 12-day-old rats. The metabolism of [14C] glucose in myelin subfractions was also examined during the 85 day interval. In addition, the development of each of these subfractions, as reflected by protein accretion, was determined.Between 13 and 97 days of age, the amount of the three myelin subfractions increased 10- to 44-fold. At 13 days of age the heavy subfraction accounted for the greatest percentage of myelin protein. However, beyond 13 days, light myelin predominated.The total 3H-radioactivity in the light, medium and heavy subfractions increased throughout most of the 85 day interval examined. The 3H specific radioactivity (3H dpm/μgram protein) of light myelin peaked at 12 hours after injection. The specific radioactivity of both 3H and 14C (14C dpm/μgram lipid) in light myelin declined beyond the initial time point in the long term (18 hour – 85 day) study. In contrast, the specific radioactivity of both 3H and 14C peaked in the medium and heavy subfractions at 4 days after injection of radioactive precursor.The possible existence of a membranous precursor to myelin is discussed.  相似文献   

12.
BRAIN-SPECIFIC ANTIGENS IN THE QUAKING MOUSE DURING ONTOGENY   总被引:4,自引:3,他引:1  
Abstract— By means of crossed Immunoelectrophoresis the concentrations of 7 brain-specific antigens have been investigated during the ontogenic development of normal and Quaking mice. Two proteins, the glial fibrillary acidic protein and the brain-specific membrane protein D5 were found to be strongly increased in mutant brains. The synaptosomal antigen synaptin (Cl), the 14-3-2 protein of neuronal cytoplasm, and the neuronal membrane antigens D1, D2 and D3 were all present at normal levels in mutant brains.  相似文献   

13.
The effect of hypophysectomy on the protein metabolism of the liver in vivo was studied. Fractional rates of protein synthesis and degradation were determined in the livers of normal and hypophysectomized rats. Synthesis was measured after the injection of massive amounts of radioactive leucine. Degradation was estimated either as the balance between synthesis and accumulation of stable liver proteins or from the disappearance of radioactivity from the proteins previously labelled by the injection of NaH14CO3. The results indicate that: (1) hypophysectomy diminishes the capacity of the liver to synthesize proteins in vivo, mainly of those that are exported as plasma proteins; (2) livers of both normal and hypophysectomized rats show identical protein-degradation rates, whereas plasma proteins are degraded slowly after hypophysectomy.  相似文献   

14.
Abstract— Mouse brain subcellular fractions were prepared at 1, 12, and 24 h and 3 and 8 days after intracerebral injections of [1-14C]arachidonate. Initially, radioactivity was mainly distributed in the microsomal and synaptosomal fractions, but the proportion of radioactivity in the myelin increased from 5 to 16% within 8 days. Radioactivity of the microsomal lipids started to decline at 1 h after injection, and the decay was represented by two pools with half-lives of 19 h and 10 days, respectively. Radioactivity in the synaptosomal and myelin fractions did not reach a maximum until 24 h after injections. The half-life for turnover of synaptosomal lipids was 9 days.
The decline of radioactivity measured in the microsomal fraction was due mainly to diacyl-GPC and diacyl-GPI, since radioactivity of other phosphoglycerides (diacyl-GPS, diacyl-GPE and alkenyl-acyl-GPE) continued to increase for 12-24 h. In this fraction, half-lives of 10-14 h were obtained for the fast turnover pools of diacyl-GPC and diacyl-GPI, and slow turnover pools with half-lives of 7 days for diacyl-GPI and 10-14 days for other phosphoglycerides were also present. Among the synaptosomal phosphoglycerides, radioactivity of diacyl-GPI declined in a biphasic mode, thus exhibiting half-lives of 5 h and 5 days. Incorporation of labelled arachidonate into diacyl-GPE and diacyl-GPS in the synaptosomal fractions was observed for a period of 24 h. The half-lives for these phosphoglycerides ranged from 8 to 12 days. Results of the study have demonstrated the presence of small pools of arachidonoyl-GPI in synaptosomal and microsomal fractions which were metabolically more active than other arachidonoyl containing phosphoglycerides.  相似文献   

15.
The axonal transport of labelled proteins was studied in the optic system of adult rabbits after an intraocular injection of [3H]Ieucine. It was demonstrated that the precursor was incorporated into protein, which was transported along the axons of the retinal ganglion cells. Intraocularly injected puromycin inhibited protein synthesis in the retina and markedly inhibited the appearance of labelled protein in the optic nerve and tract. It was further demonstrated by intracisternal injection of [3H]leucine that an intraocular injection of puromycin did not affect the local protein synthesis in the optic nerve and tract. Cell fractionation studies of the optic nerve and tract showed that the rapidly migrating component, previously described as moving at an average rate of 110-150 mm/day, was largely associated with the microsomal fraction. About 40 per cent of the total protein-bound radioactivity in this component was found in the microsomal fraction and about 15 per cent was recovered in the soluble protein fraction. Most of the labelled material moving at a rate of 1-5-2 mm/day was soluble protein. The specific radioactivity of this component was about ten times greater than that of the fast one. In the slow component about 50 per cent of the radioactivity was found in the soluble protein fraction and about 10 per cent of the radioactivity was recovered in the microsomal fraction. Radioautography demonstrated incorporated label in the neuropil structures in the lateral geniculate body as early as 4-8 hr after intraocular injection. The labelling of the neuropil increased markedly during the first week, and could be observed after 3 weeks.  相似文献   

16.
1. The turnover of synaptosomal (vesicular-cytoplasmic) and stable-bound (vesicular) acetylcholine isolated from cortical tissue was investigated after the administration, under local anaesthesia, of [N-Me-(3)H]choline into the lateral ventricles of guinea pigs. 2. Radioactive acetylcholine and choline present in acid extracts of subcellular fractions were separated by a combination of liquid and column ion-exchange and thin-layer chromatography. 3. The specific radioactivity and pattern of labelling of acetylcholine present in a fraction of monodisperse synaptic vesicles was found to be essentially the same as that of synaptosomal acetylcholine. 4. The specific radioactivity of stable-bound acetylcholine present in partially disrupted synaptosomes (fraction H) at short times (10-20min) after the injection of [N-Me-(3)H]choline was very variable and inversely related to the yield of acetylcholine in that fraction. 5. Evidence was found for the existence of two small, but highly labelled pools of acetylcholine, one which could be isolated in fraction H and the other which was lost when synaptosomes, after isolation by gradient centrifugation, were left at 0 degrees C or pelleted. 6. It is concluded that the results are best explained by metabolic differences among the nerve-ending compartments (thought to be vesicles) which contain stable-bound acetylcholine. Computer simulation of our experiments supports this possibility and suggests that the highly labelled pool in fraction H is present in vesicles close to the external membrane.  相似文献   

17.
1. The intravenous injection of puromycin to mice 0.5 min after administration of radioactive leucine resulted in the release of labelled ribosome-bound nascent protein chains with the next 0.5 min. 2. During the subsequent 13 min, 40% of the liver protein radioactivity disappeared. The rate of this process was already maximal 0.5 min after the injection of puromycin, with no apparent lag. 3. Evidence is presented that this phenomenon represents the selective degradation of puromycinyl-peptides: (a) the magnitude of this fraction corresponded to the calculated proportion of protein radioactivity in nascent chains at the time of the puromycin effect; (b) the size distribution of the proteins disappearing between 2 and 14 min was smaller than that of those retained at 14 min; and (c) when the injection of puromycin was delayed for 5 min, or when the leucine pulse was interrupted by the injection of cycloheximide (rather than puromycin), the fraction disappearing within 14 min was much smaller. 4. The degradation of puromycinyl-peptides was much slower in the rapidly growing livers of animals recovering from a protein depletion than in the protein-depleted controls. It is concluded that the large decrease in the overall rates of total liver protein degradation previously described during liver growth is a general phenomenon, also affecting the rate of scavenging of abnormal proteins.  相似文献   

18.
Cryostat sections of various substrates were treated with carbobenzoxychloride in acetone to modify antigens. By applying specific fluorescent antibodies, it could be shown that the antigenic determinants of rabbit gamma-globulin and bovine insulin were totally masked. The antigenicity of ACTH was markedly reduced, whereas the polysaccharide antigens of Salmonella typhimurium were only partially masked. After masking, antigenicity could be restored by treatment with nonspecific protease. The reversible protection of amino groups by carbobenzoxychloride may be a way to preserve protein antigens during embedding in plastics, as such materials also bind to amino groups, blocking the antigenicity of proteins.  相似文献   

19.
B cell memory was shown to develop in congenitally athymic (nu/nu) mice after injection with small amounts of thymus-dependent antigens, in particular heterologous serum proteins, such as fown gamma-globulin (FGG) or DNP-bovine-serum albumin (DNP-BSA). Large doses of proteins (10 mg) tended to produce a specific B cell unresponsiveness, although there was still some evidence of B cell priming. The antigen did not have to be in a multivalent form to interact with B cell so as to induce immunologic memory or tolerance. In contrast to the induction of B cell memory, the production of IgG antibody in this system was found to be strongly T cell dependent. Thymus-independent antigens like LPS or POL with pronounced adjuvant effects on IgG production in normal or surgically thymectomized mice, could not replace T cells in allowing an IgG response against thymus-dependent antigens in congenitally athymic mice. However, the action of T cells once activated is likely to be non-antigen-specific, since it was shown that supernatants of antigen-activated-syngeneic T cells stimulated IgG production in cultures of primed B cell populations non-antigen-specifically.  相似文献   

20.
The synthesis rates of total heart protein and of sarcoplasmic and myofibrillar protein fractions have been determined by perfusion of isolated rat hearts with [14C]tyrosine at constant specific radioactivity. In hearts perfused without insulin, both myofibrillar and sarcoplasmic proteins were synthesized at a fractional rate of 10–11% per day. This corresponds to a half-life for synthesis of about 7 days. The effect of added insulin was to increase the rate of heart-protein synthesis to a half-life of 3–4 days. With hearts perfused via the left atrium and performing external work, there was a rise in the specific radioactivity of intracellular free tyrosine, and the half-life for synthesis of proteins was 3–4 days. The extent of labelling of individual myofibrillar proteins was estimated after polyacrylamide-gel electrophoresis of solubilized myofibrils in the presence of sodium dodecyl sulphate. No particular protein showed an unusually high or low specific radioactivity after labelling in perfusion. Insulin caused a general increase in labelling of all the proteins analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号