首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the expression of genes implicated in oxidative stress and in extracellular matrix (ECM) remodeling and selected protein expression profiles in mouse skin were examined after exposure to low-dose-rate or high-dose-rate photon irradiation. ICR mice received whole-body γ rays to total doses of 0, 0.25, 0.5 and 1 Gy at dose rates of 50 cGy/h or 50 cGy/min. Skin tissues were harvested for characterization at 4 h after irradiation. For oxidative stress after low-dose-rate exposure, 0.25, 0.5 and 1 Gy significantly altered 27, 23 and 25 genes, respectively, among 84 genes assessed (P < 0.05). At doses as low as 0.25 Gy, many genes responsible for regulating the production of reactive oxygen species (ROS) were significantly altered, with changes >2-fold compared to 0 Gy. For an ECM profile, 18-20 out of 84 genes were significantly up- or downregulated after low-dose-rate exposure. After high-dose-rate irradiation, of 84 genes associated with oxidative stress, 16, 22 and 22 genes were significantly affected after 0.25, 0.5 and 1 Gy, respectively. Compared to low-dose-rate radiation, high-dose-rate exposure resulted in different ECM gene expression profiles. The most striking changes after low-dose-rate or high-dose-rate exposure on ECM profiles were on genes encoding matrix metalloproteinases (MMPs), e.g., Mmp2 and Mmp15 for low dose rate and Mmp9 and Mmp11 for high dose rate. Immunostaining for MMP-2 and MMP-9 proteins showed radiation dose rate-dependent differences. These data revealed that exposure to low total doses with low-dose-rate or high-dose-rate photon radiation induced oxidative stress and ECM-associated alterations in gene expression profiles. The expression of many genes was differentially regulated by different total dose and/or dose-rate regimens.  相似文献   

2.
目的研究γ射线对人外周血淋巴细胞cx43和ANLN基因转录表达的影响。方法对数生长期的淋巴细胞,分别给予1、2、3、4、5、6 Gy的^60Coγ射线照射,照射后12h,以及2Gy照射后4、8、12、24、36、48、72h,分别提取总RNA,反转录成cDNA。利用实时荧光定量PCR技术,检测各组cx43和ANLN基因表达改变。结果人外周血淋巴细胞cx43 mRNA表达水平在2Gy照射后4、8、12h明显增高,分别为对照组(未照射组)的6.74、9.06、7.22倍(P〈0.05);24~72h,其表达水平与对照组相比没有明显变化。1、2、3、4、5、6Gy剂量照射后12h,cx43 mRNA表达水平显著增高(P〈0.05)。ANLN mRoNA表达水平在2Gy不同时间点及1~5Gy照射后12h,表达降低(P〈0.05),6Gy照射后12h其表达开始升高,为对照组的6.08倍(P〈0.05)。结论γ射线照射2Gy不同时间点及不同剂量照射后12h,cx43基因表达上调,ANLN基因表达下调。1~3Gy剂量照射后12h,cx43 mRNA表达在此范围内有时间和剂量的依赖性。cx43可能会发展为核事故受照射人员的分子生物学剂量标记物。  相似文献   

3.
In vitro experiments with C3H 10T(1/2) mouse cells were performed to determine whether Frequency Division Multiple Access (FDMA) or Code Division Multiple Access (CDMA) modulated radiofrequency (RF) radiations induce changes in gene expression. After the cells were exposed to either modulation for 24 h at a specific absorption rate (SAR) of 5 W/ kg, RNA was extracted from both exposed and sham-exposed cells for gene expression analysis. As a positive control, cells were exposed to 0.68 Gy of X rays and gene expression was evaluated 4 h after exposure. Gene expression was evaluated using the Affymetrix U74Av2 GeneChip to detect changes in mRNA levels. Each exposure condition was repeated three times. The GeneChip data were analyzed using a two-tailed t test, and the expected number of false positives was estimated from t tests on 20 permutations of the six sham RF-field-exposed samples. For the X-ray-treated samples, there were more than 90 probe sets with expression changes greater than 1.3-fold beyond the number of expected false positives. Approximately one-third of these genes had previously been reported in the literature as being responsive to radiation. In contrast, for both CDMA and FDMA radiation, the number of probe sets with an expression change greater than 1.3-fold was less than or equal to the expected number of false positives. Thus the 24-h exposures to FDMA or CDMA RF radiation at 5 W/kg had no statistically significant effect on gene expression.  相似文献   

4.
5.
The effect of the total single and chronic roentgen irradiation in the dose of 0.25 Gy on the rats to alteration dynamics in lysosomal cysteine cathepsin L [CE 3.4.22.15] level in different brain regions (cortex, cerebellum, middle brain, varolian, hippocampus, striatum) was studied as a result of 1, 12, 24, 120 and 168 hours of exposure. The data obtained displayed the opposite consequences of chronic effect of 0.01 Gy during 25 days if compare with the single irradiation by 0.25 Gy that led to the cathepsin L changes different in directivity and activity level in dependence on brain region and post-irradiation period.  相似文献   

6.
In order to examine if differences in activity and inducibility of antioxidative enzymes in rat cerebral cortex and hippocampus are underlying their different sensitivity to radiation, we exposed four-day-old female Wistar rats to cranial radiation of 3 Gy of gamma-rays. After isolation of hippocampus and cortex 1 h or 24 h following exposure, activities of copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT) were measured and compared to unirradiated controls. MnSOD protein levels were determined by SDS-PAGE electrophoresis and Western blot analysis. Our results showed that CuZnSOD activity in hippocampus and cortex was significantly decreased 1 h and 24 h after irradiation with 3 Gy of gamma-rays. MnSOD activity in both brain regions was also decreased 1 h after irradiation. 24 h following exposure, manganese SOD activity in hippocampus almost achieved control values, while in cortex it significantly exceeded the activity of the relevant controls. CAT activity in hippocampus and cortex remained stable 1 h, as well as 24 h after irradiation with 3 Gy of gamma-rays. MnSOD protein level in hippocampus and cortex decreased 1 h after irradiation with 3 Gy of gamma-rays. 24 h after exposure, MnSOD protein level in cortex was similar to control values, while in hippocampus it was still significantly decreased. We have concluded that regional differences in MnSOD radioinducibility are regulated at the level of protein synthesis, and that they represent one of the main reasons for region-specific radiosensitivity of the brain.  相似文献   

7.
Pregnant rats were exposed to gamma radiation from a 137Cs irradiator on gestational Day 15. Fetuses that received 0.25, 0.5, 0.75, or 1.0 Gy were examined 24 h after irradiation for changes in the cells of the cerebral mantle of the developing brain. The extent of changes following 0.5 Gy was studied at 3, 6, 12, or 24 h after exposure. Cortical thickness of the cerebral mantle was not significantly altered. The number of pyknotic cells, number of macrophages, nuclear area, and number of mitotic cells were altered in a dose-related way. The number of pyknotic cells was significantly increased at all doses. A positive correlation between the number of pyknotic cells and the number of macrophages developed with time. At 3 h after irradiation about 60% of pyknotic cells were found in the subventricular zone and about 25% in the intermediate zone and cortical plate. The number of such cells in the upper layers of the cortex steadily increased up to 24 h, at which time about 70% of pyknotic cells were in these two layers. The relationship of the movement of pyknotic cells to migration of postmitotic neuroblasts is discussed.  相似文献   

8.
Abstract. The effect of radiation on TK is more complicated than would be expected from earlier results on bone marrow cells ( Feinendegen et al. 1984 , Int. J. Radiat. Biol. 45, 205). TK activity increased at 0.01 Gy and then decreased up to 1 Gy in mouse spleen. In contrast to the results for the spleen, an increase in activity at 0.1 Gy was seen in mouse thymus. The activity of dephosphorylated TK1 (TK1a) in both spleen and thymus was reduced to 50% after irradiation at 0.5–1 Gy. The degree of phosphorylation (TK1b/TK1a ratio) changed in spleen, but not in thymus. The activity of TK2 in mouse liver increased at 3 h after 5 Gy by about 60%. In mouse ascites tumour, a dose-independent (1–5 Gy) oscillating TK1 activity was found up to 24 h, especially for TK1a and TK1b. The amount of TK1 was unchanged up to 12 h, but decreased at 24 h. This suggests that the differences in the changes in the degree of phosphorylation of TK1 after irradiation among spleen, thymus and ascites tumour further underline the complexity of the response of TK1 activity to irradiation. The dramatic change in the activities of TK1a and TK1b may illustrate that both of them are more radiosensitive than TK-h, a variant with mixed TK1 and TK2 properties.  相似文献   

9.
10.
11.
12.
目的:观察不同剂量x射线对大鼠精子CRISP2mRNA表达水平的影响,探讨其在电离辐射所致大鼠精子功能改变中的作用。方法:用吸收剂量为1、2、4、和6Gy的x射线分别照射活体SD大鼠的外生殖系统1…4812、24h后,用PCR技术检测精子CRISP2基因mRNA表达水平;用光学显微镜观察精予活力。以未照射组为对照。结果:4、6GyX射线照射不同时间(1、4、8、12、24h时)后大鼠精子的CRISP2mRNA相对表达量均较对照组显著下降(P.〈0.05),其中6Gb,照射24小时后相对表达量最低(P〈0.01),而4Gy照射组与6Gy照射组相比较差异无统计学意义(P〉0.05);2Gyx射线照射8h后CRISP2mRNA相对表达量下降有统计学意义(P〈0.05);2GyX射线照射1、4h后及1GyX射线照射不同时间(1、4、8、12、24la)后大鼠精子的CRISP2mRNA相对表达量较对照组下降,但差异无统计学意义(P〉O.05)。1、2GyX射线照射不同时间(1、4、8、12、24小时)及4GyX射线照射(1、4、8h)后,精子活力与正常对照组相比无明显改变(P〉0.05);4GyX射线照射12、24h后大鼠精子活力显著低于正常对照;6GyX射线照射不同时间(1、4、8、12、24h)后,精子活力明显低于对照组(P〈0.05)。结论:不同剂量X射线照射不同时间可导致SD大鼠精子活力下降,这可能与其下调CRISP2基因的mRNA表达水平有关。  相似文献   

13.
The catalase activities in blood and organs of the acatalasemic (C3H/AnLCsbCsb) mouse of the C3H strain are lower than those of the normal (C3H/AnLCsaCsa) mouse. We conducted a study to examine changes in the activities of antioxidant enzymes, such as catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPX), the total gluathione content, and the lipid peroxide level in the brain, which is more sensitive to oxidative stress than other organs, at 3, 6, or 24 hr following X-ray irradiation at doses of 0.25, 0.5, or 5.0 Gy to the acatalasemic and the normal mice. No significant change in the lipid peroxide level in the acatalasemic mouse brain was seen under non-irradiation conditions. However, the acatalasemic mouse brain was more damaged than the normal mouse brain by excessive oxygen stress, such as a high-dose (5.0 Gy) X-ray. On the other hand, we found that, unlike 5.0 Gy X-ray, a relatively low-dose (0.5 Gy) irradiation specifically increased the activities of both catalase and GPX in the acatalasemic mouse brain making the activities closer to those in the normal mouse brain. These findings may indicate that the free radical reaction induced by the lack of catalase is more properly neutralized by low dose irradiation.  相似文献   

14.
In an attempt to determine whether exposure to extremely low frequency (ELF) electromagnetic fields can affect cells, Ku80-deficient cells (xrs5) and Ku80-proficient cells (CHO-K1) were exposed to ELF electromagnetic fields. Cell survival, and the levels of the apoptosis-related genes p21, p53, phospho-p53 (Ser(15)), caspase-3 and the anti-apoptosis gene bcl-2 were determined in xrs5 and CHO-K1 cells following exposure to ELF electromagnetic fields and X-rays. It was found that exposure of xrs5 and CHO-K1 cells to 60 Hz ELF electromagnetic fields had no effect on cell survival, cell cycle distribution and protein expression. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields for 5 h after irradiation significantly inhibited G(1) cell cycle arrest induced by X-rays (1 Gy) and resulted in elevated bcl-2 expression. A significant decrease in the induction of p53, phospho-p53, caspase-3 and p21 proteins was observed in xrs5 cells when irradiation by X-rays (8 Gy) was followed by exposure to 5 mT ELF magnetic fields. Exposure of xrs5 cells to the ELF electromagnetic fields for 10 h following irradiation significantly decreased X-ray-induced apoptosis from about 1.7% to 0.7%. However, this effect was not found in CHO-K1 cells within 24 h of irradiation by X-rays alone and by X-rays combined with ELF electromagnetic fields. Exposure of xrs5 cells to 60 Hz ELF electromagnetic fields following irradiation can affect cell cycle distribution and transiently suppress apoptosis by decreasing the levels of caspase-3, p21, p53 and phospho-p53 and by increasing bcl-2 expression.  相似文献   

15.
We have previously determined by using immune-assay or bio-assay methods that low-dose irradiation enhances immune and anti-oxidation functions. In this study, we examined histological changes of lymphatic follicles at 4, 24, or 48 hrs after sham, 0.25, 0.5, or 15 Gy irradiation in the spleens of BALB/c mice, which are sensitive to radiation compared with other strains, and C57BL/6J mice, which are resistant to radiation, using hematoxylin-eosin staining for lymphatic follicles or methylgreen pyronin staining for plasma cells. Results show that the lymphatic follicles in the spleens of the two mouse strains decreased at 24 or 48 hrs after 15 Gy irradiation. The number of plasma cells in the spleens of sham irradiated BALB/c mice was greater than that of sham irradiated C57BL/6J mice. At 4 hrs after 0.25 Gy irradiation, plasma cells increased in the spleens of the two mouse strains. These findings suggest, by histology, that low-dose irradiation activates the plasma cells and enhances the immune function. Although those two mouse strains have different sensitivities to radiation, the above changes were similar in both time course and degree of response. Therefore, the phenomena observed may be common in mice.  相似文献   

16.
Phosphorylation of the replacement histone H2AX occurs in megabase chromatin domains around DNA double-strand breaks (DSBs), and this modification called γH2AX can be used as an effective marker for DSB repair and DNA damage response. In this study, we examined a bystander effect (BE) in locally irradiated embryonic human fibroblasts. Using fluorescence microscopy, we found that BE could be observed 1 h after X-ray irradiation (IR) and was completely eliminated 24 h after IR. Using immunohistochemistry and immunoblotting, we also studied kinetics of γH2AX formation and elimination in Syrian hamster and mouse tissues after whole body IR of animals. Analysis of hamster tissues at different times after IR at the dose 5 Gy showed that γH2AX-associated fluorescence in heart was decreased slowly with about a half level remaining 24 h after IR; at the same time, in brain, the level of γH2AX was about 3 times increased over the control level, and in liver, γH2AX level decreased to control values. We also report that in mouse heart the level of γH2AX measured by immunoblotting is lower than in brain, kidney and liver at different times after IR at the dose 3 Gy. Our observations indicate that there are significant variations in dynamics of γH2AX formation and elimination between non-proliferating mammalian tissues. These variations in γH2AX dynamics in indicated organs partially correlated with the expression level of the major kinase genes involved in H2AX phosphorylation (ATM and DNA-PK).  相似文献   

17.
18.
Changes in gene expression profiles in mouse liver induced by long-term low-dose-rate γ irradiation were examined by microarray analysis. Three groups of male C57BL/6J mice were exposed to whole-body radiation at dose rates of 17-20 mGy/day, 0.86-1.0 mGy/day or 0.042-0.050 mGy/day for 401-485 days with cumulative doses of approximately 8 Gy, 0.4 Gy or 0.02 Gy, respectively. The gene expression levels in the livers of six animals from each exposure group were compared individually with that of pooled sham-irradiated animals. Some genes revealed a large variation in expression levels among individuals within each group, and the number of genes showing common changes in individuals from each group was limited: 20 and 11 genes showed more than 1.5-fold modulation with 17-20 mGy/day and 0.86-1.0 mGy/day, respectively. Three genes showed more than 1.5-fold modulation even at the lowest dose-rate of 0.04-0.05 mGy/day. Most of these genes were down-regulated. RT-PCR analysis confirmed the expression profiles of the majority of these genes. The results indicate that a few genes are modulated in response to very low-dose-rate irradiation. The functional analysis suggests that these genes may influence many processes, including obesity and tumorigenesis.  相似文献   

19.
The purpose of this paper is to determine the relationship between the response to radiation and the appearance of apoptosis and micronuclei with Trp53 protein in murine tumors after irradiation. Two murine tumors, EL4, which was derived from a mouse lymphoma, and FM3A, which was derived from a mouse mammary carcinoma, were locally irradiated with 15 Gy and sections were stained with H&E and an anti-Trp53 antibody. The response to radiation was greater in EL4 tumors than in FM3A tumors. The frequency of apoptotic cells in EL4 tumors was 6.1 +/- 1.2% at time zero, reached a peak of 36.3 +/- 3. 8% at 6 h, and then decreased with time through 72 h to 2.5 +/- 1.5% after 15 Gy irradiation. In FM3A tumors, no apoptotic cells were detected at 0, 1, 3, 6 or 24 h after exposure. At 48 and 72 h, the frequency was only 3.0 +/- 0.6% and 1.3 +/- 0.3%. Apoptotic cells increased significantly at 3, 6 and 24 h after irradiation in EL4 tumors (P < 0.008) and at 48 and 72 h in FM3A tumors (P < 0.006). The frequency of Trp53-positive cells was 17.9 +/- 2.2 and 15.2 +/- 2.3% at time zero in EL4 and FM3A tumors, respectively, increased to 74.5 +/- 4.5% in EL4 cells (P = 0.001), and increased to 33.9 +/- 1. 1% in FM3A cells (P = 0.005) 1 h after irradiation. Trp53-positive micronuclei appeared in cells in both tumors from 24 to 72 h after irradiation. The frequency of Trp53-positive micronuclei was 3.8 +/- 0.5 and 13.5 +/- 1.3% at 24 h in EL4 and FM3A tumors, respectively, and gradually decreased by 72 h. After exposure to 15 Gy, Trp53-positive micronuclei increased significantly in FM3A tumors compared to EL4 tumors at both 24 and 48 h (P < 0.02). The frequency of these micronuclei increased with increasing dose in FM3A tumors, and the difference between these percentages after 3 Gy and after 5, 10 and 15 Gy was significant (P < 0.02). Many apoptotic cells were observed in the radiosensitive EL4 tumor after irradiation. Death by apoptosis may be related to an early response to radiation in these tumors. The appearance of micronuclei may be an important mechanism of cell death in FM3A tumors in which no apoptosis was induced.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号