首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several small molecule non-peptide antagonists of the NK-1 and NK-2 receptors have been developed. Mutational analysis of the receptor protein sequence has led to the conclusion that the binding site for these non-peptide antagonists lies within the bundle created by transmembrane domains IV–VII of the receptor and differs from the binding sites of peptide agonists and antagonists. The current investigation uses site-directed mutagenesis of the NK-1 and NK-2 receptors to elucidate the amino acids that are important for binding and functional activity of the first potent dual NK-1/NK-2 antagonist MDL103,392. The amino acids found to be important for MDL103,392 binding to the NK-1 receptor are Gln-165, His-197, Leu-203, Ile-204, Phe-264, His-265 and Tyr-272. The amino acids found to be important for MDL103,392 binding to the NK-2 receptor are Gln-166, His-198, Tyr-266 and Tyr-289. While residues in transmembrane (TM) domains IV and V are important in both receptors (Gln-165/166 and His-197/198), residues in TM V and VI are more important for the NK-1 receptor and residues in TM VII play a more important role in the NK-2 receptor. These data are the first report of the analysis of the binding site of a dual tachykinin receptor antagonist and indicate that a single compound (MDL103,392) binds to each receptor in a different manner despite there being a high degree of homology in the transmembrane bundles. In addition, this is the first report in which a model for the binding of a non-peptide antagonist to the NK-2 receptor is proposed.  相似文献   

2.
G-protein-coupled receptors (GPCR) represent a superfamily of proteins that mediate the function of neurotransmitters and peptide hormones and are involved in viral entry and perception of light, smell, and taste. GPCRs are characterized by the presence of seven transmembrane domains (TMs). We demonstrate here that structural analogs of individual TMs of GPCRs can serve as potent and specific receptor antagonists. Peptides derived from the transmembrane regions of CXCR4 and CCR5 chemokine receptors specifically inhibited receptor signaling and the in vitro replication of human immunodeficiency virus-1 (HIV-1) at concentrations as low as 0.2 microM. Similarly, peptides mimicking the TMs of cholecystokinin receptor A, were found to abolish ligand binding and signaling through the receptor. Negative charges positioned at the extracellular termini of peptide antagonists appeared to be important for correct spontaneous insertion of the compounds into the cell membrane and for their activity. Targeting of the specific interactions between transmembrane domains of GPCRs is suggested as a general sequence-based method to disrupt receptor function for application in drug design and for structure-function studies of the receptors.  相似文献   

3.
Le Y  Ye RD  Gong W  Li J  Iribarren P  Wang JM 《The FEBS journal》2005,272(3):769-778
Formyl peptide receptor-like 1 (FPRL1) is a seven transmembrane domain, G protein-coupled receptor that interacts with a variety of exogenous and host-derived agonists. In order to identify domains crucial for ligand recognition by FPRL1, we used chimeric receptors with segments in FPRL1 replaced by corresponding amino acid sequences derived from the prototype formyl peptide receptor FPR. The chimeric receptors were stably transfected into human embryonic kidney epithelial cells and the capacity of the cells to migrate in response to formyl peptide receptor agonists was evaluated. Our results showed that multiple domains in FPRL1 are involved in the receptor response to chemotactic agonists with the sixth transmembrane domain and the third extracellular loop playing a prominent role. Interestingly, the N-terminus and a segment between the fourth transmembrane domain and the third intracellular loop of FPRL1 are important for receptor interaction with a 42 amino acid amyloid beta peptide (Abeta42), an Alzheimer's disease-associated FPRL1 agonist, but not with MMK-1, a synthetic FPRL1 agonist, suggesting that diverse agonists may use different domains in FPRL1. Considering the potential importance of FPRL1 in inflammation and neurodegenerative diseases, the identification of functional domains in this receptor will provide valuable information for the design of specific receptor antagonists.  相似文献   

4.
Molecular mechanism of AMPA receptor noncompetitive antagonism   总被引:2,自引:0,他引:2  
AMPA-type glutamate receptors are specifically inhibited by the noncompetitive antagonists GYKI-53655 and CP-465,022, which act through sites and mechanisms that are not understood. Using receptor mutagenesis, we found that these antagonists bind at the interface between the S1 and S2 glutamate binding core and channel transmembrane domains, specifically interacting with S1-M1 and S2-M4 linkers, thereby disrupting the transduction of agonist binding into channel opening. We also found that the antagonists' affinity is higher for agonist-unbound receptors than for activated nondesensitized receptors, further depending on the level of S1 and S2 domain closure. These results provide evidence for substantial conformational changes in the S1-M1 and S2-M4 linkers following agonist binding and channel opening, offering a conceptual frame to account for noncompetitive antagonism of AMPA receptors.  相似文献   

5.
Ligand-induced receptor oligomerization is an established mechanism for receptor-tyrosine kinase activation. However, numerous receptor-tyrosine kinases are expressed in multicomponent complexes with other receptors that may signal independently or alter the binding characteristics of the receptor-tyrosine kinase. Nerve growth factor (NGF) interacts with two structurally unrelated receptors, the Trk A receptor-tyrosine kinase and p75, a tumor necrosis factor receptor family member. Each receptor binds independently to NGF with predominantly low affinity (K(d) = 10(-9) m), but they produce high affinity binding sites (K(d) = 10(-11) m) upon receptor co-expression. Here we provide evidence that the number of high affinity sites is regulated by the ratio of the two receptors and by specific domains of Trk A and p75. Co-expression of Trk A containing mutant transmembrane or cytoplasmic domains with p75 yielded reduced numbers of high affinity binding sites. Similarly, co-expression of mutant p75 containing altered transmembrane and cytoplasmic domains with Trk A also resulted in predominantly low affinity binding sites. Surprisingly, extracellular domain mutations of p75 that abolished NGF binding still generated high affinity binding with Trk A. These results indicate that the transmembrane and cytoplasmic domains of Trk A and p75 are responsible for high affinity site formation and suggest that p75 alters the conformation of Trk A to generate high affinity NGF binding.  相似文献   

6.
The G protein-coupled cannabinoid receptor subtypes CB1 and CB2 have been cloned from several species. The CB1 receptor is highly conserved across species, whereas the CB2 receptor shows considerable cross-species variations. The two human receptors share only 44% overall identity, ranging from 35% to 82% in the transmembrane regions. Despite this structural disparity, the most potent cannabinoid agonists currently available are largely undiscriminating and are therefore unsatisfactory tools for investigating the architecture of ligand binding sites. However, the availability of two highly specific antagonists, SR 141716A for the CB1 receptor and SR 144528 for the CB2 receptor, has allowed us to adopt a systematic approach to defining their respective binding sites through the use of chimeric CB1 receptor/CB2 receptor constructs, coupled with site-directed mutagenesis. We identified the region encompassed by the fourth and fifth transmembrane helices as being critical for antagonist specificity. Both the wild type human receptors overexpressed in heterologous systems are autoactivated; SR 141716A and SR 144528 exhibit classical inverse agonist properties with their respective target receptors. In addition, through its interaction with the CB1 receptor SR 141716A blocks the Gi protein-mediated activation of mitogen-activated protein kinase stimulated by insulin or insulin-like growth factor I. An in-depth analysis of this discovery has led to a modified three-state model for the CB1 receptor, one of which implicates the SR 141716A-mediated sequestration of Gi proteins, with the result that the growth factor-stimulated intracellular pathways are effectively impeded.  相似文献   

7.
A model of the Ca2+-sensing receptor (CaSR) seven transmembrane domains was constructed based on the crystal structure of bovine rhodopsin. This model was used for docking (1S,2S,1'R)-N1-(4-chlorobenzoyl)-N2-[1-(1-naphthyl)ethyl]-1,2-diaminocyclohexane (Calhex 231), a novel potent negative allosteric modulator that blocks (IC50 = 0.39 microm) increases in [3H]inositol phosphates elicited by activating the human wild-type CaSR transiently expressed in HEK293 cells. In this model, Glu-8377.39 plays a pivotal role in anchoring the two nitrogen atoms of Calhex 231 and locating the aromatic moieties in two adjacent hydrophobic pockets delineated by transmembrane domains 3, 5, and 6 and transmembrane domains 1, 2, 3, and 7, respectively. To demonstrate its validity, we have mutated selected residues and analyzed the biochemical and pharmacological properties of the mutant receptors transfected in HEK293 cells. Two receptor mutations, F684A3.32 and E837A7.39, caused a loss of the ability of Calhex 231 to inhibit Ca2+-induced accumulation of [3H]inositol phosphates. Three other mutations, F688A3.36, W818A6.48, and I841A7.43, produced a marked increase in the IC50 of Calhex 231 for the Ca2+ response, whereas L776A5.42 and F821A6.51 led to a decrease in the IC50. Our data validate the proposed model for the allosteric interaction of Calhex 231 with the seven transmembrane domains of the CaSR. Interestingly, the residues at the same positions have been shown to delimit the antagonist-binding cavity of many diverse G-protein-coupled receptors. This study furthermore suggests that the crystal structure of bovine rhodopsin exhibits sufficient mimicry to the ground state of a very divergent class 3 receptor to predict the interaction of antagonists with the heptahelical bundle of diverse G-protein-coupled receptors.  相似文献   

8.
The topography and functional domains of the cAMP chemotactic receptor of Dictyostelium discoideum were investigated by protease sensitivity to chymotrypsin. Proteolytic digestion of intact cells produced a 23-kDa fragment of the receptor that retained the photoaffinity label used to identify the receptor. Additionally, this fragment contained the sites phosphorylated by CAR-kinase, the enzyme that phosphorylates the ligand-occupied form of the receptor. The fragment was also found to be phosphorylated in response to cAMP stimulation of cells. Proteolytic digestion of either intact cells or membrane preparations did not appreciably alter the binding properties of the receptor, indicating that the domains which determine the cAMP binding pocket are likely to be transmembrane regions of the protein. Additionally, the sensitivity of down-regulated receptors to chymotrypsin digestion suggests that the initial loss of cAMP binding activity upon incubation of cells with high concentrations of ligand does not require receptor internalization.  相似文献   

9.
Chemokine receptors play a major role in immune system regulation and have consequently been targets for drug development leading to the discovery of several small molecule antagonists. Given the large size and predominantly extracellular receptor interaction of endogenous chemokines, small molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5 chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5 chemokines (CCL3 and CCL5), with CCR2-like high affinities and potencies throughout the CCR5 signaling unit. Concomitantly, high affinity binding of small molecule CCR5 agonists and antagonists was retained in the transmembrane region. Importantly, whereas the agonistic and antagonistic properties were preserved, the allosteric enhancement of chemokine binding was disrupted. In summary, the Trojan horse chimera revealed that orthosteric and allosteric sites could be structurally separated and still act together with transmission of agonism and antagonism across the different receptor units.  相似文献   

10.
Lee SP  O'Dowd BF  Rajaram RD  Nguyen T  George SR 《Biochemistry》2003,42(37):11023-11031
In this study, we examined the mechanisms of intermolecular interaction involved in D2 dopamine receptor dimer formation to develop an understanding of the quaternary structure of G protein-coupled receptors. The potential role of two mechanisms was investigated: disulfide bridges and hydrophobic interactions between transmembrane domains. D2 dopamine receptor oligomers were unaffected by treatment with a reducing agent; however, oligomers of the D1 dopamine receptor dissociated following a similar treatment. This observation suggested that other forces such as hydrophobic interactions were more robust in the D2 receptor than in the D1 receptor in maintaining oligomerization. To elucidate which transmembrane domains were involved in the intermolecular hydrophobic interactions, truncation mutants were generated by successive deletion of transmembrane domains from amino and/or carboxyl portions of the D2 dopamine receptor. Immunoblot analyses revealed that all the fragments were well expressed but only fragments containing transmembrane domain 4 were able to self-associate, suggesting that critical areas for receptor dimerization resided within this transmembrane domain. Disruption of the helical structure of transmembrane domain 4 in a truncated receptor capable of forming dimers interfered with its ability to self-associate; however, a similar disruption of the transmembrane domain 4 helix structure in the full-length receptor did not significantly affect dimerization. These results indicated that there are other sites of interaction involved in D2 receptor oligomer assembly in addition to transmembrane domain 4.  相似文献   

11.
Using site-directed mutagenesis of the human beta 2-adrenergic receptor and continuous expression in B-82 cells, the role of 3 conserved cysteines in transmembrane domains and 2 conserved cysteines in the third extracellular domain in receptor function was examined. Cysteine was replaced with serine in each mutant receptor as this amino acid is similar to cysteine in size but it cannot form disulfide linkages. Replacement of cysteine residues 77 and 327, in the second and seventh transmembrane-spanning domains, respectively, had no effect on ligand binding or the ability of the receptor to mediate isoproterenol stimulation of adenylate cyclase. Substitution of cysteine 285, in the sixth transmembrane domain of the receptor, produced a mutant receptor with normal ligand-binding properties but a significantly attenuated ability to mediate stimulation of adenylate cyclase. Mutation of cysteine residues 190 and 191, in the third extracellular loop of the beta 2 receptor, had qualitatively similar effects on ligand binding and isoproterenol-mediated stimulation of adenylate cyclase. Replacement of either of these residues with serine produced mutant receptors that displayed a marked loss in affinity for both beta-adrenergic agonists and antagonists. Replacement of both cysteine 190 and 191 with serine had an even greater effect on the ability of the receptor to bind ligands. Consistent with the loss of Ser190 and/or Ser191 mutant receptor affinity for agonists was a corresponding shift to the right in the dose-response curve for isoproterenol-induced increases in intracellular cyclic AMP concentrations in cells expressing the mutant receptors. These data implicate one of the conserved transmembrane cysteine residues in the human beta 2-adrenergic receptor in receptor activation by agonists and also suggest that conserved cysteine residues in an extracellular domain of the receptor may be involved in ligand binding.  相似文献   

12.
Melatonin receptors bind and become activated by melatonin. The melatonin-related receptor, despite sharing considerable amino acid sequence identity with melatonin receptors, does not bind melatonin and is currently an orphan G protein-coupled receptor. To investigate the structure and function of both receptors, we engineered a series of 14 chimeric receptor constructs, allowing us to determine the relative contribution of each transmembrane domain to ligand binding and receptor function. Results identified that when sequences encoding transmembrane domains 1, 2, 3, 5, or 7 of the melatonin mt(1) receptor were replaced by the corresponding domains of the melatonin-related receptor, the resultant chimeric receptors all displayed specific 2-[(125)I]iodomelatonin binding. Replacement of sequences incorporating transmembrane domains 4 or 6, however, resulted in chimeric receptors that displayed no detectable 2-[(125)I]iodomelatonin binding. The subsequent testing of a "reverse" chimeric receptor in which sequences encoding transmembrane domains 4 and 6 of the melatonin-related receptor were replaced by the corresponding melatonin mt(1) receptor sequences identified specific 2-[(125)I]iodomelatonin binding and melatonin-mediated modulation of cyclic AMP levels. To further investigate these findings, site-directed mutagenesis was performed on residues within transmembrane domain 6 of the melatonin mt(1) receptor. This identified Gly(258) (Gly(6.55)) as a critical residue required for high affinity ligand binding and receptor function.  相似文献   

13.
Toll-like receptors (TLRs) act as the first line of defense against bacterial and viral pathogens by initiating critical defense signals upon dimer activation. The contribution of the transmembrane domain in the dimerization and signaling process has heretofore been overlooked in favor of the extracellular and intracellular domains. As mounting evidence suggests that the transmembrane domain is a critical region in several protein families, we hypothesized that this was also the case for Toll-like receptors. Using a combined biochemical and biophysical approach, we investigated the ability of isolated Toll-like receptor transmembrane domains to interact independently of extracellular domain dimerization. Our results showed that the transmembrane domains had a preference for the native dimer partners in bacterial membranes for the entire receptor family. All TLR transmembrane domains showed strong homotypic interaction potential. The TLR2 transmembrane domain demonstrated strong heterotypic interactions in bacterial membranes with its known interaction partners, TLR1 and TLR6, as well as with a proposed interaction partner, TLR10, but not with TLR4, TLR5, or unrelated transmembrane receptors providing evidence for the specificity of TLR2 transmembrane domain interactions. Peptides for the transmembrane domains of TLR1, TLR2, and TLR6 were synthesized to further study this subfamily of receptors. These peptides validated the heterotypic interactions seen in bacterial membranes and demonstrated that the TLR2 transmembrane domain had moderately strong interactions with both TLR1 and TLR6. Combined, these results suggest a role for the transmembrane domain in Toll-like receptor oligomerization and as such, may be a novel target for further investigation of new therapeutic treatments of Toll-like receptor mediated diseases.  相似文献   

14.
Cloning and expression of a rat neuromedin K receptor cDNA   总被引:28,自引:0,他引:28  
Functional cDNA clones for rat neuromedin K receptor were isolated from a rat brain cDNA library by cross-hybridization with the bovine substance K receptor cDNA. Injection of the mRNA synthesized in vitro from the cloned cDNA into Xenopus oocytes elicited electrophysiological responses to tachykinins, with the most potent sensitivity being to neuromedin K. Ligand-binding displacement in membranes of mammalian COS cells transfected with the cDNA indicated the rank order of affinity of the receptor to tachykinins: neuromedin K greater than substance K greater than substance P. The hybridization analysis showed that the neuromedin K receptor mRNA is expressed in both the brain and the peripheral tissues at different levels. The rat neuromedin K receptor consists of 452 amino acid residues and belongs to the family of G protein-coupled receptors, which are though to have seven transmembrane domains. The sequence comparison of the rat neuromedin K, substance P, and substance K receptors revealed that these receptors are highly conserved in the seven transmembrane domains and the cytoplasmic sides of the receptors. They also show some structural characteristics, including the common presence of histidine residues in transmembrane segments V and VI and the difference in the numbers and distributions of serine and threonine residues as possible phosphorylation sites in the cytoplasmic regions. This paper thus presents the first comprehensive analysis of the molecular nature of the multiple peptide receptors that exhibit similar but pharmacologically distinguishable activities.  相似文献   

15.
AMPA receptors mediate fast excitatory transmission in the brain. Neuronal AMPA receptors comprise GluA pore-forming principal subunits and can associate with multiple modulatory components, including transmembrane AMPA receptor regulatory proteins (TARPs) and CNIHs (cornichons). AMPA receptor potentiators and non-competitive antagonists represent potential targets for a variety of neuropsychiatric disorders. Previous studies showed that the AMPA receptor antagonist GYKI-53655 displaces binding of a potentiator from brain receptors but not from recombinant GluA subunits. Here, we asked whether AMPA receptor modulatory subunits might resolve this discrepancy. We find that the cerebellar TARP, stargazin (γ-2), enhances the binding affinity of the AMPA receptor potentiator [(3)H]-LY450295 and confers sensitivity to displacement by non-competitive antagonists. In cerebellar membranes from stargazer mice, [(3)H]-LY450295 binding is reduced and relatively resistant to displacement by non-competitive antagonists. Coexpression of AMPA receptors with CNIH-2, which is expressed in the hippocampus and at low levels in the cerebellar Purkinje neurons, confers partial sensitivity of [(3)H]-LY450295 potentiator binding to displacement by non-competitive antagonists. Autoradiography of [(3)H]-LY450295 binding to stargazer and γ-8-deficient mouse brain sections, demonstrates that TARPs regulate the pharmacology of allosteric AMPA potentiators and antagonists in the cerebellum and hippocampus, respectively. These studies demonstrate that accessory proteins define AMPA receptor pharmacology by functionally linking allosteric AMPA receptor potentiator and antagonist sites.  相似文献   

16.
Lipids influence the ability of Cys-loop receptors to gate open in response to neurotransmitter binding, but the underlying mechanisms are poorly understood. With the nicotinic acetylcholine receptor (nAChR) from Torpedo, current models suggest that lipids modulate the natural equilibrium between resting and desensitized conformations. We show that the lipid-inactivated nAChR is not desensitized, instead it adopts a novel conformation where the allosteric coupling between its neurotransmitter-binding sites and transmembrane pore is lost. The uncoupling is accompanied by an unmasking of previously buried residues, suggesting weakened association between structurally intact agonist-binding and transmembrane domains. These data combined with the extensive literature on Cys-loop receptor-lipid interactions suggest that the M4 transmembrane helix plays a key role as a lipid-sensor, translating bilayer properties into altered nAChR function.  相似文献   

17.
Efforts to develop orally available gonadotropin-releasing hormone (GnRH) receptor antagonists have led to the discovery of several classes of potent nonpeptide antagonists. Here we investigated molecular interactions of three classes of nonpeptide antagonists with human, rat, and macaque GnRH receptors. Although all are high affinity ligands of the human receptor (K(i) <5 nm), these compounds show reduced affinity for the macaque receptor and bind only weakly (K(i) >1 microm) to the rat receptor. To identify residues responsible for this selectivity, a series of chimeric receptors and mutant receptors was constructed and evaluated for nonpeptide binding. Surprisingly, 4 key residues located in the amino terminus (Met-24) and extracellular loops II (Ser-203, Gln-208) and III (Leu-300) of the GnRH receptor appear to be primarily responsible for species-selective binding. Comparisons of reciprocal mutations suggest that these may not be direct contacts but rather may be involved in organizing extracellular portions of the receptor. These data are novel because most previous reports of residues involved in binding of nonpeptide ligands to peptide-activated G protein-coupled receptors, including the GnRH receptor as well as mono-amine receptors, have identified binding sites in the transmembrane regions.  相似文献   

18.
Refined 3D models of the transmembrane domains of the cloned delta, mu and kappa opioid receptors belonging to the superfamily of G-protein coupled receptors (GPCRs) were constructed from a multiple sequence alignment using the alpha carbon template of rhodopsin recently reported. Other key steps in the procedure were relaxation of the 3D helix bundle by unconstrained energy optimization and assessment of the stability of the structure by performing unconstrained molecular dynamics simulations of the energy optimized structure. The results were stable ligand-free models of the TM domains of the three opioid receptors. The ligand-free delta receptor was then used to develop a systematic and reliable procedure to identify and assess putative binding sites that would be suitable for similar investigation of the other two receptors and GPCRs in general. To this end, a non-selective, 'universal' antagonist, naltrexone, and agonist, etorphine, were used as probes. These ligands were first docked in all sites of the model delta opioid receptor which were sterically accessible and to which the protonated amine of the ligands could be anchored to a complementary proton-accepting residue. Using these criteria, nine ligand-receptor complexes with different binding pockets were identified and refined by energy minimization. The properties of all these possible ligand-substrate complexes were then examined for consistency with known experimental results of mutations in both opioid and other GPCRs. Using this procedure, the lowest energy agonist-receptor and antagonist-receptor complexes consistent with these experimental results were identified. These complexes were then used to probe the mechanism of receptor activation by identifying differences in receptor conformation between the agonist and the antagonist complex during unconstrained dynamics simulation. The results lent support to a possible activation mechanism of the mouse delta opioid receptor similar to that recently proposed for several other GPCRs. They also allowed the selection of candidate sites for future mutagenesis experiments.  相似文献   

19.
Abstract: 5-Hydroxytryptamine elicits its physiological effects by interacting with a diverse group of receptors. Two of these receptors, the 5-HT1Dβ and the 5-HT1E receptors, are ∼60% identical in the transmembrane domains that presumably form the ligand binding site yet have very different pharmacological properties. Analysis of the pharmacological properties of a series of chimeric 5-HT1Dβ/5-HT1E receptors indicates that sequences in the sixth and seventh transmembrane domains are responsible for the differential affinity of 5-carboxamidotryptamine for these two receptors. More detailed analysis shows that two amino acid differences in the sixth transmembrane domain (Ile333 and Ser334 in the 5-HT1Dβ receptor, corresponding to Lys310 and Glu311 in the 5-HT1E receptor) are largely responsible for the differential affinities of some, but not all, ligands for the 5-HT1Dβ and 5-HT1E receptors. It is likely that these two amino acids subtly determine the overall three-dimensional structure of the receptor rather than interact directly with individual ligands.  相似文献   

20.
A rapid, functional assay in frog melanophore cells for the erythropoietin receptor (EPOR), a member of the cytokine receptor family, is demonstrated. A chimeric receptor that comprised the extracellular portion of the murine EPOR and the transmembrane and intracellular domains of the human epidermal growth factor receptor (EGFR) was subcloned into the expression vector pJG3.6. When the full-length EGFR was expressed in melanophores, EGF but not EPO mediated pigment dispersion in a time- and dose-dependent manner with an EC50 of 12.6 6 2.9 pM. However, when the chimeric EPOR/EGFR was expressed, EPO but not EGF stimulated pigment dispersion in a time- and dose-dependent manner with an EC50 of 380 6 107 pM. Neither EGF nor EPO had any effect on pigment dispersion in wild-type melanophores. EGF- and EPO-mediated pigment dispersion was blocked by the bis-indolylmaleimide protein kinase C inhibitor Ro 31-8220. This study extends the use of the melanophore-based bioassay to include cytokine receptors in addition to G protein- and tyrosine kinase-coupled receptors. It represents a potentially powerful method for screening of combinatorial libraries to identify novel small molecule agonists and antagonists to this clinically important class of binding sites as well as performing studies of functional ligand-receptor interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号