首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transglutaminases (EC 2.3.2.13) catalyze the formation of epsilon-(gamma-glutamyl)lysine cross-links and the substitution of a variety of primary amines for the gamma-carboxamide groups of protein-bound glutamine residues. These enzymes are involved in many biological phenomena. Transglutaminase reactions also have been shown to be suitable for applied enzymology. In this study, as a first step of studies to elucidate the structure/function relationship of transglutaminase, we constructed an expression plasmid, pKTG1, containing a cDNA of guinea-pig liver transglutaminase between the NcoI and PstI sites of an expression vector, pKK233-2, and produced the liver transglutaminase as an unfused protein in Escherichia coli. The purified recombinant enzyme was indistinguishable from natural liver transglutaminase in some structural properties such as molecular mass, amino acid composition, and amino- and carboxyl-terminal sequences. However, the alpha-amino group of the amino-terminal alanine residue of the recombinant transglutaminase was not acetylated as was that of the natural enzyme. Comparison of the recombinant enzyme with the natural one did not indicate significant differences in specific activity and apparent Km values for substrates in the histamine incorporation into acetyl alpha s1-casein. The sensitivity to activation by Ca2+ and the rate of catalyzed protein cross-linking were also similar between recombinant and natural transglutaminases. These results indicated that the N alpha-acetyl group in natural liver transglutaminase has not a particular role in the catalytic function of this enzyme.  相似文献   

2.
We report the first high-level expression of a mammalian thioltransferase (glutaredoxin) in Escherichia coli. A NcoI site (CCATGG) was introduced into the cDNA encoding pig liver thioltransferase (glutaredoxin) by site-directed mutagenesis, in which the first G of the original sequence, GCATGG, was replaced by a C. The altered cDNA was cloned into an expression vector, plasmid pKK233-2, between the unique NcoI and HindIII sites and expressed in E. coli JM105 at a high level (8% of total soluble protein) after 6 h of isopropyl-beta-D-thiogalactopyranoside induction. The soluble and unfused product was measured by the thiol-transferase thiol-disulfide exchange assay and immunoblotting analysis. The recombinant enzyme was purified to a single band as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing. The amino acid composition of the expressed enzyme agreed with that of the known sequence of pig liver thioltransferase (glutaredoxin). N-terminal sequence analysis revealed that unlike the native pig liver protein which is N-acetylated, the recombinant enzyme was unblocked at the N terminus (alanine). Various kinetic properties of the recombinant enzyme with regard to the exchange reaction were identical with those of the native enzyme.  相似文献   

3.
Rat liver protein disulfide isomerase (PDI) catalyzes the oxidative folding of proteins containing disulfide bonds. We have developed an efficient method for its overproduction in Escherichia coli. Using a T7 RNA polymerase expression system, isolated yields of 15-30 mg/liter of recombinant rat PDI are readily obtained. Convenient purification of the enzyme from E. coli lysates involves ion-exchange (DEAE) chromatography combined with zinc chelate chromatography. The recombinant PDI shows catalytic activity identical to that of PDI isolated from bovine liver in both the reduction of insulin and the oxidative folding of ribonuclease A. The enzyme is expressed in E. coli as a soluble, cytoplasmic protein. After complete reduction and denaturation in 6 M guanidinium hydrochloride, PDI regains complete activity within 3 min after removal of the denaturant, implying that disulfide bonds are not essential for the maintenance of PDI tertiary structure. Both the protein isolated from E. coli and the protein isolated from liver contained free cysteine residues (1.8 +/- 0.2 and 1.4 +/- 0.3 SH/monomer, respectively).  相似文献   

4.
5.
Structural genomics has the ambitious goal of delivering three-dimensional structural information on a genome-wide scale. Yet only a small fraction of natural proteins are suitable for structure determination because of bottlenecks such as poor expression, aggregation, and misfolding of proteins, and difficulties in solubilization and crystallization. We propose to overcome these bottlenecks by producing soluble, highly expressed proteins that are derived from and closely related to their natural homologs. Here we demonstrate the utility of this approach by using a green fluorescent protein (GFP) folding reporter assay to evolve an enzymatically active, soluble variant of a hyperthermophilic protein that is normally insoluble when expressed in Escherichia coli, and determining its structure by X-ray crystallography. Analysis of the structure provides insight into the substrate specificity of the enzyme and the improved solubility of the variant.  相似文献   

6.
Protein aggregation is a major bottleneck during the bacterial production of recombinant proteins. In general, the induction of gene expression at sub-optimal growth temperatures improves the solubility of aggregation-prone polypeptides and minimizes inclusion body (IB) formation. However, the effect of low temperatures on the quality of the recombinant protein, especially within the insoluble cell fraction, has been hardly ever explored. In this work, we have examined the conformational status of a recombinant GFP protein when produced in Escherichia coli below 37 degrees C. As expected, the fraction of aggregated protein largely decreased at lower temperatures, while the conformational quality of both soluble and aggregated GFP, as reflected by its specific fluorescence emission, progressively improved. This observation indicates that physicochemical conditions governing protein folding affect concurrently the quality of the soluble and the aggregated forms of a misfolding-prone protein, and that protein misfolding and aggregation are clearly not coincident events.  相似文献   

7.
Recombinant expression of eukaryotic proteins in Escherichia coli is often limited by poor folding and solubility. To address this problem, we employed a recently developed genetic selection for protein folding and solubility based on the bacterial twin‐arginine translocation (Tat) pathway to rapidly identify properly folded recombinant proteins or soluble protein domains of mammalian origin. The coding sequences for 29 different mammalian polypeptides were cloned as sandwich fusions between an N‐terminal Tat export signal and a C‐terminal selectable marker, namely β‐lactamase. Hence, expression of the selectable marker and survival on selective media was linked to Tat export of the target mammalian protein. Since the folding quality control feature of the Tat pathway prevents export of misfolded proteins, only correctly folded fusion proteins reached the periplasm and conferred cell survival. In general, the ability to confer growth was found to relate closely to the solubility profile and molecular weight of the protein, although other features such as number of contiguous hydrophobic amino acids and cysteine content may also be important. These results highlight the capacity of Tat selection to reveal the folding potential of mammalian proteins and protein domains without the need for structural or functional information about the target protein.  相似文献   

8.
The precursor to rat liver mitochondrial aspartate aminotransferase has been expressed in Escherichia coli JM105 using the pKK233-2 expression vector. This mammalian natural precursor has been isolated as a soluble dimeric protein. The amino-terminal sequence and the amino acid composition of the isolated protein correspond to those predicted from the inserted cDNA (Mattingly, J. R., Jr., Rodriguez-Berrocal, F. J., Gordon, J., Iriarte, A., and Martinez-Carrion, M. (1987) Biochem. Biophys. Res. Commun. 149, 859-865). The isolated precursor contains bound pyridoxal phosphate and shows catalytic activity with a specific activity equal to that of the mature form of the enzyme. This precursor can also be processed by mitochondria into a form with the sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility of mature enzyme. The isolation of this precursor as a stable and catalytically active entity indicates that the presequence peptide does not necessarily interfere with much of the folding and basic structural properties of the mature protein component.  相似文献   

9.
Low protein solubility and inclusion body formation represent big challenges in production of recombinant proteins in Escherichia coli. We have recently reported functional expression of hydroxynitrile lyase from Manihot esculenta, MeHNL, in E. coli with high in vivo solubility and activity using directed evolution. As a part of attempts to clarify the mechanism of this phenomenon, we have described the possibility of expression of the highly active and soluble mutant MeHNL-His103Leu as well as wild-type enzyme in several expression systems. Methylotrophic yeast Pichia pastoris, protozoan host Leishmania tarentolae and two cell-free translations, including an E. coli lysate (WakoPURE system) and wheat germ translation system were used to compare expression profiles of the genes. Two distinguishable protein expression patterns were observed in prokaryotic and eukaryotic-based systems. The wild-type and mutant enzyme showed high activity for both genes (up to 10 U/ml) in eukaryotic hosts P. pastoris and L. tarentolae, while those of E. coli exhibited about 1 and 15 U/ml, respectively. The different activity level in prokaryotic systems but the same level among the eukaryotic hosts indicate the phenomenon is specific to the E. coli system. Both the wild-type and mutant enzymes were functionally expressed in eukaryotic systems, probably using the folding assistants such as chaperones. Properties of expression systems used in this study were precisely compared, too.  相似文献   

10.
Accumulation of soluble recombinant hemoglobin (rHb1.1) in Escherichia coli requires proper protein folding, prosthetic group (heme) addition, and subunit assembly. This served as a new model system for the study of the effects of temperature, protein synthesis rates, and protein accumulation rates on protein solubility in E. coli. Fermentation expression of rHb1.1 at 30 degrees C from cultures containing a medium or high globin gene dosage (pBR-based or pUC-based plasmids with rHb1.1 genes under the control of the tac promoter) was compared. A medium gene dosage resulted in rHb1.1 accumulating to approximately 7% of the soluble cell protein, of which 78% was soluble. A high globin gene dosage resulted in a > or = 3-fold increase in total globin to 23 to 24% of the soluble cell protein, but 70% was insoluble. Accumulation of insoluble rHb1.1 began immediately upon induction. The proportion of rHb1.1 from the high globin gene dosage that accumulated as insoluble globin was affected by reducing (i) the inducer concentration and (ii) the temperature. Reducing the inducer concentration reduced globin synthesis up to eightfold but increased the proportion of soluble rHb1.1 to 93%. In contrast, total globin protein synthesis was barely affected by reducing the temperature from 30 to 26 degrees C, while soluble globin accumulation increased > 2-fold to approximately 15% of the soluble cell protein. The contrast between the effects of reducing rates of protein synthesis and accumulation and those of reducing temperature suggests that lower temperature stabilizes one or more folding intermediates. We propose a simplified physical model which integrates protein synthesis, folding, and heme association. This model shows that temperature-dependent apoglobin stability is the most critical factor in soluble rHb1.1 accumulation.  相似文献   

11.
The coding region of a human beta-polymerase cDNA, predicting a 335 amino acid protein, was subcloned in the Escherichia coli expression plasmid pRC23. After induction of transformed cells, the crude soluble extract was found to contain a new protein immunoreactive with beta-polymerase antibody and corresponding in size to the protein deduced from the cDNA. This protein was purified in a yield of 1-2 mg/50 g of cells. The recombinant protein had about the same DNA polymerase specific activity as beta-polymerase purified from mammalian tissues, and template-primer specificity and immunological properties of the recombinant polymerase were similar to those of natural beta-polymerases. The purified enzyme was free of nuclease activity. We studied detailed catalytic properties of the recombinant beta-polymerase using defined template-primer systems. The results indicate that this beta-polymerase is essentially identical with natural beta-polymerases. The recombinant enzyme is distributive in mode of synthesis and is capable of detecting changes in the integrity of the single-stranded template, such as methylated bases and double-stranded region. The enzyme recognizes a template region four to seven bases downstream of the primer 3' end and utilizes alternative primers if this downstream template region is double stranded. The enzyme is unable to synthesize past methylated bases N3-methyl-dT or O6-methyl-dG.  相似文献   

12.
Transglutaminase is an enzyme family responsible for post-translational modification such as protein cross-linking and the attachment of primary amine and/or deamidation of glutamine-residue in proteins. Medaka (Oryzias latipes), a recently established model fish, has similar functional proteins to those characterized in mammals. Previously, we found the apparent orthologues that correspond to human transglutaminases in medaka. In this study, regarding the medaka orthologue of human tissue-type transglutaminase (OlTGT), recombinant protein was expressed in an active form in bacteria cultured at low temperature. Using the recombinant protein, we biochemically characterized the enzymatic activity and also obtained a monoclonal antibody that specifically recognized OlTGT. Immunochemical analysis revealed that OlTGT was not expressed ubiquitously, unlike its mammalian orthologue, but in primarily limited tissues such as the eye, brain, spinal cord, and gas gland.  相似文献   

13.
We have developed a series of plasmid vectors for the soluble expression and subsequent purification of recombinant proteins that have historically proven to be extremely difficult to purify from Escherichia coli. Instead of dramatically overproducing the target protein, it is expressed at a low basal level that facilitates the correct folding of the recombinant protein and increases its solubility. Highly active recombinant proteins that are traditionally difficult to purify are readily purified using standard affinity tags and conventional chromatography. To demonstrate the utility of these vectors, we have expressed and purified full-length human DNA polymerases η, ι, and ν from E. coli and show that the purified DNA polymerases are catalytically active in vitro.  相似文献   

14.
The 29-kDa FK506 binding protein (FKBP) gene is the only peptidyl-prolyl cis-trans isomerase (PPIase) gene in the genome of Pyrococcus horikoshii. We characterized the function of this FKBP (PhFKBP29) and used it to increase the production yield of soluble recombinant protein in Escherichia coli. The PPIase activity (k(cat)/K(m)) of PhFKBP29 was found to be much lower than that of other archaeal 16- to 18-kDa FKBPs by a chymotrypsin-coupled assay of the oligo-peptidyl substrate at 15 degrees C. Besides this low PPIase activity, PhFKBP29 showed chaperone-like protein folding activity which enhanced the refolding yield of chemically unfolded rhodanese in vitro. In addition, it suppressed thermal protein aggregation in a temperature range of 45 to 100 degrees C. When the PhFKBP29 gene was coexpressed with the recombinant Fab fragment gene of the anti-hen egg lysozyme antibody in the cytoplasm of E. coli, whose expressed product tended to form an inactive aggregate in E. coli, it improved the yield of the soluble Fab fragments with antibody specificity. PhFKBP29 exerted protein folding and aggregation suppression in E. coli cells.  相似文献   

15.
10-Deacetylbaccatin III-10-O-acetyltransferase (10-DABT) catalyzes the formation of baccatin III, which is an immediate diterpenoid precursor of Taxol. A cDNA encoding 10-DABT was cloned from Taxus baccata by using RT-PCR and screening a cDNA library. A study of its heterologous overexpression in Escherichia coli was carried out. To get high-level expression of recombinant enzyme, three kinds of IPTG inducible fusion expression systems (with glutathione S-transferase (GST), hexahistidine (6x His), and biotinylated tag) were used, and results of expression were compared. Fusion 10-DABT with different tags was expressed with diverse expression levels and solubility in the three systems. Optimum IPTG concentration, temperature, and inducing time for producing recombinant enzymes were found. Under higher IPTG concentration (up to 1 mM), the highest level of expression for fusion protein was obtained in the 6x His fusion system with phage T5 promoter, but expressed products were only partially soluble. With lower IPTG concentration (less than 0.5 mM), the highest expression was detected in the GST fusion system with tac promoter, and the lowest level of expression appeared in the biotinylated fusion system. The expression level in the latter system did not differ dramatically with a range of different inducer concentrations. GST and 6x His fusion proteins were mainly soluble in aqueous solutions and Triton X-100 improved the solubility of biotinylated fusion proteins (inferring this protein is membrane-associated). Fusion proteins could only be partially purified by a single affinity chromatography step for all three systems. Glutathione-coupled matrix and streptavidin-conjugated resin have higher specificity than Ni-NTA resin, and elution conditions were shown to affect enzyme activity. Three kinds of recombinant 10-DABT with different tags showed enzyme activity, but total enzyme activity was lost as a result of the affinity chromatography step. Thrombin and Factor Xa could be used for site-specific cleavage of fusion proteins, but the incubation temperature affected enzyme activity of recombinant enzymes.  相似文献   

16.
D-Ornithine aminomutase from Clostridium sticklandii comprises two strongly associating subunits, OraS and OraE, with molecular masses of 12,800 and 82,900 Da. Previous studies have shown that in Escherichia coli the recombinant OraS protein is synthesized in the soluble form and OraE as inclusion bodies. Refolding experiments also indicate that the interactions between OraS and OraE and the binding of either pyridoxal phosphate (PLP) or adenosylcobalamin (AdoCbl) play important roles in the refolding process. In this study, the DNA fragment containing both genes was cloned into the same expression vector and coexpression of the oraE and oraS genes was carried out in E. coli. The solubility of the coexpressed OraS and OraE increases with decreasing isopropyl thio-beta-D-galactoside induction temperature. Among substrate analogues tested, only 2,4-diamino-n-butyric acid displays competitive inhibition of the enzyme with a K(i) of 96 +/- 14 microm. Lys629 is responsible for the binding of PLP. The apparent K(d) for coenzyme B(6) binding to d-ornithine aminomutase is 224 +/- 41 nm as measured by equilibrium dialysis. The mutant protein, OraSE-K629M, is successfully expressed. It is catalytically inactive and unable to bind PLP. Because no coenzyme is involved in protein folding during in vivo translation of OraSE-K629M in E. coli, in vitro refolding of the enzyme employs a different folding mechanism. In both cases, the association of the S and E subunit is important for D-ornithine aminomutase to maintain an active conformation.  相似文献   

17.
18.
Ahn JH  Keum JW  Kim DM 《PloS one》2011,6(11):e26875
While access to soluble recombinant proteins is essential for a number of proteome studies, preparation of purified functional proteins is often limited by the protein solubility. In this study, potent solubility-enhancing fusion partners were screened from the repertoire of endogenous E. coli proteins. Based on the presumed correlation between the intracellular abundance and folding efficiency of proteins, PCR-amplified ORFs of a series of highly abundant E. coli proteins were fused with aggregation-prone heterologous proteins and then directly expressed for quantitative estimation of the expression efficiency of soluble translation products. Through two-step screening procedures involving the expression of 552 fusion constructs targeted against a series of cytokine proteins, we were able to discover a number of endogenous E. coli proteins that dramatically enhanced the soluble expression of the target proteins. This strategy of cell-free expression screening can be extended to quantitative, global analysis of genomic resources for various purposes.  相似文献   

19.
Transglutaminases catalyze the cross-linking and amine incorporation of proteins, and are implicated in various biological phenomena. To elucidate the physiological roles of transglutaminase at the molecular level, we need to identify its physiological protein substrates and clarify the relationship between transglutaminase modification of protein substrates and biological responses. Here we examined whether betaine-homocysteine S-methyltransferase (BHMT: EC 2.1.1.5) can be a substrate of tissue-type transglutaminase by in vitro experiments using porcine liver BHMT and guinea pig liver transglutarninase. Guinea pig liver transglutaminase incorporated 5-(biotinamido) pentylamine and [3H] histamine into BHMT in a time-dependent manner. Putrescine and spermidine also seemed to be incorporated into BHMT by transglutaminase. In the absence of the primary amines, BHMT subunits were cross-linked intra- and intermolecularly. BHMT activity was decreased significantly through the cross-linking by transglutaminase. Histamine incorporation slightly reduced the BHMT activity. Peptide fragments of BHMT containing the glutamine residues reactive for transglutaminase reaction were isolated through biotin labelling, proteinase digestion, biotin-avidin a affinity separation, and reverse phase HPLC. The results of amino acid sequence analyses of these peptides and sequence homology alignment with other mammalian liver BHMT subunits showed that these reactive glutamine residues were located in the region near the carboxyl terminal of porcine BHMT subunit. These results suggested that the liver BHMT can be modified by tissue-type transglutaminase and its activity is regulated repressively by the modification, especially by the cross-linking. This regulatory reaction might be involved in the regulation of homocysteine metabolism in the liver.  相似文献   

20.
Recombinant production of mammalian cytoplasmic proteins plays a major role in developing pharmaceutical products. Here we describe two expression technologies using unique nature of halophilic bacteria. One of such properties of halophilic bacteria is accumulation of compatible solutes in the cytoplasm. As the compatible solutes enhance protein solubility and folding, one might utilize these bacteria for cytoplasmic soluble expression of recombinant proteins, as described in this review. Another uniqueness is high reversibility of thermally unfolded halophilic proteins. Here we show that one such protein, β-lactamase (BLA), is highly soluble both in the native and thermally unfolded states and reversibly refolds after thermal melting. This makes BLA as a potential fusion partner for soluble expression of target proteins. The BLA fusion technology is also introduced in the review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号