首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Enrichment of microorganisms with special traits and the construction of metagenomic libraries by direct cloning of environmental DNA have great potential for identifying genes and gene products for biotechnological purposes. We have combined these techniques to isolate novel genes conferring oxidation of short-chain (C2 to C4) polyols or reduction of the corresponding carbonyls. In order to favor the growth of microorganisms containing the targeted genes, samples collected from four different environments were incubated in the presence of glycerol and 1,2-propanediol. Subsequently, the DNA was extracted from the four samples and used to construct complex plasmid libraries. Approximately 100,000 Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from polyols on indicator agar. Twenty-four positive E. coli clones were obtained during the initial screen. Sixteen of them contained a plasmid (pAK101 to pAK116) which conferred a stable carbonyl-forming phenotype. Eight of the positive clones exhibited NAD(H)-dependent alcohol oxidoreductase activity with polyols or carbonyls as the substrates in crude extracts. Sequencing revealed that the inserts of pAK101 to pAK116 encoded 36 complete and 17 incomplete presumptive protein-encoding genes. Fifty of these genes showed similarity to sequenced genes from a broad collection of different microorganisms. The genes responsible for the carbonyl formation of E. coli were identified for nine of the plasmids (pAK101, pAK102, pAK105, pAK107 to pAK110, pAK115, and pAK116). Analyses of the amino acid sequences deduced from these genes revealed that three (orf12, orf14, and orf22) encoded novel alcohol dehydrogenases of different types, four (orf5, sucB, fdhD, and yabF) encoded novel putative oxidoreductases belonging to groups distinct from alcohol dehydrogenases, one (glpK) encoded a putative glycerol kinase, and one (orf1) encoded a protein which showed no similarity to any other known gene product.  相似文献   

2.
Metagenomic DNA libraries from three different soil samples (meadow, sugar beet field, cropland) were constructed. The three unamplified libraries comprised approximately 1267000 independent clones and harbored approximately 4.05 Gbp of environmental DNA. Approximately 300000 recombinant Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from short-chain (C2 to C4) polyols such as 1,2-ethanediol, 2,3-butanediol, and a mixture of glycerol and 1,2-propanediol on indicator agar. Twenty-four positive E. COLI clones were obtained during the initial screen. Fifteen of them contained recombinant plasmids, designated pAK201-215, which conferred a stable carbonyl-forming phenotype on E. coli Sequencing revealed that the inserts of pAK201-215 encoded 26 complete and 14 incomplete predicted protein-encoding genes. Most of these genes were similar to genes with unknown functions from other microorganisms or unrelated to any other known gene. The further analysis was focused on the 7 plasmids (pAK204, pAK206, pAK208, and pAK210-213) recovered from the positive clones, which exhibited an NAD(H)-dependent alcohol oxidoreductase activity with polyols or the correlating carbonyls as substrates in crude extracts. Three genes (ORF6, ORF24, and ORF25) conferring this activity were identified during subcloning of the inserts of pAK204, pAK211, and pAK212. The sequences of the three deduced gene products revealed no significant similarities to known alcohol oxidoreductases, but contained putative glycine-rich regions, which are characteristic for binding of nicotinamide cofactors.  相似文献   

3.
To isolate genes encoding coenzyme B(12)-dependent glycerol and diol dehydratases, metagenomic libraries from three different environmental samples were constructed after allowing growth of the dehydratase-containing microorganisms present for 48 h with glycerol under anaerobic conditions. The libraries were searched for the targeted genes by an activity screen, which was based on complementation of a constructed dehydratase-negative Escherichia coli strain. In this way, two positive E. coli clones out of 560,000 tested clones were obtained. In addition, screening was performed by colony hybridization with dehydratase-specific DNA fragments as probes. The screening of 158,000 E. coli clones by this method yielded five positive clones. Two of the plasmids (pAK6 and pAK8) recovered from the seven positive clones contained genes identical to those encoding the glycerol dehydratase of Citrobacter freundii and were not studied further. The remaining five plasmids (pAK2 to -5 and pAK7) contained two complete and three incomplete dehydratase-encoding gene regions, which were similar to the corresponding regions of enteric bacteria. Three (pAK2, -3, and -7) coded for glycerol dehydratases and two (pAK4 and -5) coded for diol dehydratases. We were able to perform high-level production and purification of three of these dehydratases. The glycerol dehydratases purified from E. coli Bl21/pAK2.1 and E. coli Bl21/pAK7.1 and the complemented hybrid diol dehydratase purified from E. coli Bl21/pAK5.1 were subject to suicide inactivation by glycerol and were cross-reactivated by the reactivation factor (DhaFG) for the glycerol dehydratase of C. freundii. The activities of the three environmentally derived dehydratases and that of glycerol dehydratase of C. freundii with glycerol or 1,2-propanediol as the substrate were inhibited in the presence of the glycerol fermentation product 1,3-propanediol. Taking the catalytic efficiency, stability against inactivation by glycerol, and inhibition by 1,3-propanediol into account, the hybrid diol dehydratase produced by E. coli Bl21/pAK5.1 exhibited the best properties of all tested enzymes for application in the biotechnological production of 1,3-propanediol.  相似文献   

4.
To isolate genes encoding coenzyme B12-dependent glycerol and diol dehydratases, metagenomic libraries from three different environmental samples were constructed after allowing growth of the dehydratase-containing microorganisms present for 48 h with glycerol under anaerobic conditions. The libraries were searched for the targeted genes by an activity screen, which was based on complementation of a constructed dehydratase-negative Escherichia coli strain. In this way, two positive E. coli clones out of 560,000 tested clones were obtained. In addition, screening was performed by colony hybridization with dehydratase-specific DNA fragments as probes. The screening of 158,000 E. coli clones by this method yielded five positive clones. Two of the plasmids (pAK6 and pAK8) recovered from the seven positive clones contained genes identical to those encoding the glycerol dehydratase of Citrobacter freundii and were not studied further. The remaining five plasmids (pAK2 to -5 and pAK7) contained two complete and three incomplete dehydratase-encoding gene regions, which were similar to the corresponding regions of enteric bacteria. Three (pAK2, -3, and -7) coded for glycerol dehydratases and two (pAK4 and -5) coded for diol dehydratases. We were able to perform high-level production and purification of three of these dehydratases. The glycerol dehydratases purified from E. coli Bl21/pAK2.1 and E. coli Bl21/pAK7.1 and the complemented hybrid diol dehydratase purified from E. coli Bl21/pAK5.1 were subject to suicide inactivation by glycerol and were cross-reactivated by the reactivation factor (DhaFG) for the glycerol dehydratase of C. freundii. The activities of the three environmentally derived dehydratases and that of glycerol dehydratase of C. freundii with glycerol or 1,2-propanediol as the substrate were inhibited in the presence of the glycerol fermentation product 1,3-propanediol. Taking the catalytic efficiency, stability against inactivation by glycerol, and inhibition by 1,3-propanediol into account, the hybrid diol dehydratase produced by E. coli Bl21/pAK5.1 exhibited the best properties of all tested enzymes for application in the biotechnological production of 1,3-propanediol.  相似文献   

5.
A stable shuttle vector which replicates in Escherichia coli and Clostridium perfringens was constructed by ligating a 3.6-kilobase (kb) fragment of plasmid pBR322 with C. perfringens plasmid pHB101 (3.1 kb). The marker for this shuttle plasmid originated from the 1.3-kb chloramphenicol resistance gene of plasmid pHR106. The resulting shuttle vector, designated pAK201, is 8 kb in size and codes for resistance to 20 micrograms of chloramphenicol per ml in both E. coli and C. perfringens. Following shuttle vector construction in E. coli, plasmid pAK201 was transformed into E. coli HB101 and C. perfringens ATCC 3624A, using intact cell electroporation. The transformation frequencies were 10(6) and 10(4) transformants per microgram of DNA in E. coli and C. perfringens, respectively. Restriction enzyme analysis of the chimera isolated from transformants of both microorganisms suggested that the plasmids were identical. Reciprocal transformation experiments in E. coli and C. perfringens indicated no difference in transformation frequency. Plasmid pAK201 was stable in C. perfringens following repeated transfer in the absence of chloramphenicol pressure. The restriction map of plasmid pAK201 shows six unique cut sites which should be useful for future genetic analysis and C. perfringens gene library construction.  相似文献   

6.
A stable shuttle vector which replicates in Escherichia coli and Clostridium perfringens was constructed by ligating a 3.6-kilobase (kb) fragment of plasmid pBR322 with C. perfringens plasmid pHB101 (3.1 kb). The marker for this shuttle plasmid originated from the 1.3-kb chloramphenicol resistance gene of plasmid pHR106. The resulting shuttle vector, designated pAK201, is 8 kb in size and codes for resistance to 20 micrograms of chloramphenicol per ml in both E. coli and C. perfringens. Following shuttle vector construction in E. coli, plasmid pAK201 was transformed into E. coli HB101 and C. perfringens ATCC 3624A, using intact cell electroporation. The transformation frequencies were 10(6) and 10(4) transformants per microgram of DNA in E. coli and C. perfringens, respectively. Restriction enzyme analysis of the chimera isolated from transformants of both microorganisms suggested that the plasmids were identical. Reciprocal transformation experiments in E. coli and C. perfringens indicated no difference in transformation frequency. Plasmid pAK201 was stable in C. perfringens following repeated transfer in the absence of chloramphenicol pressure. The restriction map of plasmid pAK201 shows six unique cut sites which should be useful for future genetic analysis and C. perfringens gene library construction.  相似文献   

7.
Metal resistance determinants have traditionally been found in cultivated bacteria. To search for genes involved in nickel resistance, we analyzed the bacterial community of the rhizosphere of Erica andevalensis, an endemic heather which grows at the banks of the Tinto River, a naturally metal-enriched and extremely acidic environment in southwestern Spain. 16S rRNA gene sequence analysis of rhizosphere DNA revealed the presence of members of five phylogenetic groups of Bacteria and the two main groups of Archaea mostly associated with sites impacted by acid mine drainage (AMD). The diversity observed and the presence of heavy metals in the rhizosphere led us to construct and screen five different metagenomic libraries hosted in Escherichia coli for searching novel nickel resistance determinants. A total of 13 positive clones were detected and analyzed. Insights about their possible mechanisms of resistance were obtained from cellular nickel content and sequence similarities. Two clones encoded putative ABC transporter components, and a novel mechanism of metal efflux is suggested. In addition, a nickel hyperaccumulation mechanism is proposed for a clone encoding a serine O-acetyltransferase. Five clones encoded proteins similar to well-characterized proteins but not previously reported to be related to nickel resistance, and the remaining six clones encoded hypothetical or conserved hypothetical proteins of uncertain functions. This is the first report documenting nickel resistance genes recovered from the metagenome of an AMD environment.  相似文献   

8.
Recent progress in molecular microbial ecology has revealed that traditional culturing methods fail to represent the scope of microbial diversity in nature, since only a small proportion of viable microorganisms in a sample are recovered by culturing techniques. To develop methods to investigate the full extent of microbial diversity, we used a bacterial artificial chromosome (BAC) vector to construct libraries of genomic DNA isolated directly from soil (termed metagenomic libraries). To date, we have constructed two such libraries, which contain more than 1 Gbp of DNA. Phylogenetic analysis of 16S rRNA gene sequences recovered from one of the libraries indicates that the BAC libraries contain DNA from a wide diversity of microbial phyla, including sequences from diverse taxa such as the low-G+C, gram-positive Acidobacterium, Cytophagales, and Proteobacteria. Initial screening of the libraries in Escherichia coli identified several clones that express heterologous genes from the inserts, confirming that the BAC vector can be used to maintain, express, and analyze environmental DNA. The phenotypes expressed by these clones include antibacterial, lipase, amylase, nuclease, and hemolytic activities. Metagenomic libraries are a powerful tool for exploring soil microbial diversity, providing access to the genetic information of uncultured soil microorganisms. Such libraries will be the basis of new initiatives to conduct genomic studies that link phylogenetic and functional information about the microbiota of environments dominated by microorganisms that are refractory to cultivation.  相似文献   

9.
10.
Analysis of the gluconate (gnt) operon of Bacillus subtilis   总被引:7,自引:0,他引:7  
  相似文献   

11.
12.
Metagenomic profiling: microarray analysis of an environmental genomic library   总被引:11,自引:0,他引:11  
Genomic libraries derived from environmental DNA (metagenomic libraries) are useful for characterizing uncultured microorganisms. However, conventional library-screening techniques permit characterization of relatively few environmental clones. Here we describe a novel approach for characterization of a metagenomic library by hybridizing the library with DNA from a set of groundwater isolates, reference strains, and communities. A cosmid library derived from a microcosm of groundwater microorganisms was used to construct a microarray (COSMO) containing approximately 1-kb PCR products amplified from the inserts of 672 cosmids plus a set of 16S ribosomal DNA controls. COSMO was hybridized with Cy5-labeled genomic DNA from each bacterial strain, and the results were compared with the results for a common Cy3-labeled reference DNA sample consisting of a composite of genomic DNA from multiple species. The accuracy of the results was confirmed by the preferential hybridization of each strain to its corresponding rDNA probe. Cosmid clones were identified that hybridized specifically to each of 10 microcosm isolates, and other clones produced positive results with multiple related species, which is indicative of conserved genes. Many clones did not hybridize to any microcosm isolate; however, some of these clones hybridized to community genomic DNA, suggesting that they were derived from microbes that we failed to isolate in pure culture. Based on identification of genes by end sequencing of 17 such clones, DNA could be assigned to functions that have potential ecological importance, including hydrogen oxidation, nitrate reduction, and transposition. Metagenomic profiling offers an effective approach for rapidly characterizing many clones and identifying the clones corresponding to unidentified species of microorganisms.  相似文献   

13.
Genomic libraries derived from environmental DNA (metagenomic libraries) are useful for characterizing uncultured microorganisms. However, conventional library-screening techniques permit characterization of relatively few environmental clones. Here we describe a novel approach for characterization of a metagenomic library by hybridizing the library with DNA from a set of groundwater isolates, reference strains, and communities. A cosmid library derived from a microcosm of groundwater microorganisms was used to construct a microarray (COSMO) containing ~1-kb PCR products amplified from the inserts of 672 cosmids plus a set of 16S ribosomal DNA controls. COSMO was hybridized with Cy5-labeled genomic DNA from each bacterial strain, and the results were compared with the results for a common Cy3-labeled reference DNA sample consisting of a composite of genomic DNA from multiple species. The accuracy of the results was confirmed by the preferential hybridization of each strain to its corresponding rDNA probe. Cosmid clones were identified that hybridized specifically to each of 10 microcosm isolates, and other clones produced positive results with multiple related species, which is indicative of conserved genes. Many clones did not hybridize to any microcosm isolate; however, some of these clones hybridized to community genomic DNA, suggesting that they were derived from microbes that we failed to isolate in pure culture. Based on identification of genes by end sequencing of 17 such clones, DNA could be assigned to functions that have potential ecological importance, including hydrogen oxidation, nitrate reduction, and transposition. Metagenomic profiling offers an effective approach for rapidly characterizing many clones and identifying the clones corresponding to unidentified species of microorganisms.  相似文献   

14.
Multiple retinoic acid responsive cDNAs were isolated from a high density cDNA microarray membrane, which was developed from a cDNA library of human tracheobronchial epithelial cells. Five selected cDNA clones encoded the sequence of the same novel gene. The predicted open reading frame of the novel gene encoded a protein of 319 amino acids. The deduced amino acid sequence contains four motifs that are conserved in the short-chain alcohol dehydrogenase/reductase (SDR) family of proteins. The novel gene shows the greatest homology to a group of dehydrogenases that can oxidize retinol (retinol dehydrogenases). The mRNA of the novel gene was found in trachea, colon, tongue, and esophagus. In situ hybridization of airway tissue sections demonstrated epithelial cell-specific gene expression, especially in the ciliated cell type. Both all-trans-retinoic acid and 9-cis-retinoic acid were able to elevate the expression of the novel gene in primary human tracheobronchial epithelial cells in vitro. This elevation coincided with an enhanced retinol metabolism in these cultures. COS cells transfected with an expression construct of the novel gene were also elevated in the metabolism of retinol. The results suggested that the novel gene represents a new member of the SDR family that may play a critical role in retinol metabolism in airway epithelia as well as in other epithelia of colon, tongue, and esophagus.  相似文献   

15.
16.
A new DNA sequence cry5Ad/orf2-5Ad (GenBank accession number EF219060) was isolated from Bacillus thuringiensis strain L366. This DNA sequence contains two ORFs: cry5Ad (a previously unreported member of the cry5A gene family) and orf2-5Ad. cry5Ad is unique among cry5A genes in that it encodes only the N-terminal region of a typical Cry5Adelta-endotoxin. The cry5Ad sequence includes homology blocks 1-5, which are present in most B. thuringiensisdelta-endotoxins. The usual C-terminal region of a Cry5Adelta-endotoxin (including homology blocks 6-8) is encoded by orf2-5Ad. Both proteins encoded by cry5Ad and orf2-5Ad were found in IPTG-induced Escherichia coli, after a copy of cry5Ad/orf2-5Ad was cloned into the pQE32 expression vector and transformed into pREP4 E. coli cells. Both proteins were also found in parasporal crystal inclusions of B. thuringiensis L366. Sequencing of cDNA derived from transformed E. coli cells showed that the two ORFs are transcribed as a single mRNA. Extracts prepared from the recombinant E. coli expressing Cry5Ad and Orf2-5Ad were not toxic to nematode larvae (Haemonchus contortus), indicating that these two proteins are most likely not responsible for the nematocidal activity seen previously in the B. thuringiensis strain L366.  相似文献   

17.
The virD4 gene is one of the virulence genes present on the pTiC58 plasmid of Agrobacterium tumefaciens. Unexpectedly, we found that a pTi-free A. tumefaciens strain carried a protein of similar size to the plasmid-encoded VirD4 protein which reacted with VirD4-specific antibodies. This suggested that this strain may contain a homologue of the VirD4 protein. A chromosomal fragment encoding a protein of similar sequence to VirD4 was isolated and a 7.8 kilobase region surrounding the gene encoding this putative homologue was sequenced. This region contained four open reading frames, encoding putative proteins similar to proteins of known bacterial transfer and conjugation systems, viz., orf1 encoded a putative homologue of the TraA protein of the Rhizobium symbiosis plasmid pNGR234 and the TraA protein encoded by pTiC58 from A. tumefaciens plasmid pTiC58, orf3 encoded a protein very similar to the MobC protein encoded by the IncQ plasmid RSF1010 of E. coli and to MobS encoded by pTF1 from Thiobacillus ferrooxidans, whereas the predicted product of orf4 displayed similarity to the TraG protein encoded by the IncPalpha plasmid RP4 of E. coli, TraG and VirD4 encoded by A. tumefaciens plasmid pTiC58. The product of orf2 showed no significant similarity to any known protein. Preliminary assays with two orf4 mutants suggested that the product of this orf is involved in DNA transfer. The 7.8 kb chromosomal fragment seems to be closely related to the tra region of different conjugative plasmids and appears to be confined to Agrobacterium species, raising the question of the role of a chromosomal tra-like region during evolution.  相似文献   

18.
We constructed a high-efficiency expression library from Arabidopsis cDNA clones by introducing a poly (dC) stretch at the 5' end of the clones. This library enables the synthesis of proteins from all the cDNA clones present. We have screened the high-efficiency expression library with antibodies raised against total proteins from Arabidopsis plasmalemma and tonoplast. With the positive clones, we have constructed two cDNA ordered libraries enriched in genes encoding plasmalemma (522 clones) and tonoplast proteins (594 clones). Partial sequencing of both libraries shows that a high proportion (47%) of the clones encoded putative membrane proteins, or membrane-associated proteins. When sequenced, 55% of the cDNAs were new EST sequences for Arabidopsis, 26% were similar to genes present in other plants or organisms, and 29% were not referenced in any databank. Immunoscreening of the two cDNA ordered libraries with antibodies raised against proteins from Arabidopsis cells submitted to osmotic stress allows the selection of genes over- and under-expressed in stress conditions.  相似文献   

19.
20.
A new DNA sequence cry5Ad/orf2-5Ad (GenBank accession number EF219060 ) was isolated from Bacillus thuringiensis strain L366. This DNA sequence contains two ORFs: cry5Ad (a previously unreported member of the cry5A gene family) and orf2-5Ad . cry5Ad is unique among cry5A genes in that it encodes only the N-terminal region of a typical Cry5Aδ-endotoxin. The cry5Ad sequence includes homology blocks 1–5, which are present in most B. thuringiensis δ-endotoxins. The usual C-terminal region of a Cry5Aδ-endotoxin (including homology blocks 6–8) is encoded by orf2-5Ad . Both proteins encoded by cry5Ad and orf2-5Ad were found in IPTG-induced Escherichia coli , after a copy of cry5Ad/orf2-5Ad was cloned into the pQE32 expression vector and transformed into pREP4 E. coli cells. Both proteins were also found in parasporal crystal inclusions of B. thuringiensis L366. Sequencing of cDNA derived from transformed E. coli cells showed that the two ORFs are transcribed as a single mRNA. Extracts prepared from the recombinant E. coli expressing Cry5Ad and Orf2-5Ad were not toxic to nematode larvae ( Haemonchus contortus ), indicating that these two proteins are most likely not responsible for the nematocidal activity seen previously in the B. thuringiensis strain L366.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号