首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In populations that have a high degree of admixture, such as in Brazil, the sole use of ethnicity self-declaration information is not a good method for classifying individuals regarding their ethnicity. Here, we evaluate the relationship of self-declared ethnicities with genomic ancestry and mitochondrial haplogroups in 492 individuals from southeastern Brazil. Mitochondrial haplogroups were obtained by analyzing the hypervariable regions of the mitochondrial DNA (mtDNA), and the genomic ancestry was obtained using 48 autosomal insertion-deletion ancestry informative markers (AIM). Of the 492 individuals, 74.6% self-declared as White, 13.8% as Brown and 10.4% as Black. Classification of the mtDNA haplogroups showed that 46.3% had African mtDNA, and the genomic ancestry analysis showed that the main contribution was European (57.4%). When we looked at the distribution of mtDNA and genomic ancestry according to the self-declared ethnicities from 367 individuals who self-declared as White, 37.6% showed African mtDNA, and they had a high contribution of European genomic ancestry (63.3%) but also a significant contribution of African ancestry (22.2%). Of the 68 individuals who self-declared as Brown, 25% showed Amerindian mtDNA and similar contribution of European and African genomic ancestries. Of the 51 subjects who self-declared as black, 80.4% had African mtDNA, and the main contribution of genomic ancestry was African (55.6%), but they also had a significant proportion of European ancestry (32.1%). The Brazilian population had a uniform degree of Amerindian genomic ancestry, and it was only with the use of genetic markers (autosomal or mitochondrial) that we were able to capture Amerindian ancestry information. Additionally, it was possible to observe a high degree of heterogeneity in the ancestry for both types of genetic markers, which shows the high genetic admixture that is present in the Brazilian population. We suggest that in epidemiological studies, the use of these methods could provide complementary information.  相似文献   

2.
Hispanic and African American populations exhibit an increased risk of obesity compared with populations of European origin, a feature that may be related to inherited risk alleles from Native American and West African parental populations. However, a relationship between West African ancestry and obesity-related traits, such as body mass index (BMI), fat mass (FM), and fat-free mass (FFM), and with bone mineral density (BMD) in African American women has only recently been reported. In order to evaluate further the influence of ancestry on body composition phenotypes, we studied a Hispanic population with substantial European, West African, and Native American admixture. We ascertained a sample of Puerto Rican women living in New York (n=64), for whom we measured BMI and body composition variables, such as FM, FFM, percent body fat, and BMD. Additionally, skin pigmentation was measured as the melanin index by reflectance spectroscopy. We genotyped 35 autosomal ancestry informative markers and estimated population and individual ancestral proportions in terms of European, West African, and Native American contributions to this population. The ancestry proportions corresponding to the three parental populations are: 53.3±2.8% European, 29.1±2.3% West African, and 17.6±2.4% Native American. We detected significant genetic structure in this population with a number of different tests. A highly significant correlation was found between skin pigmentation and individual ancestry (R2=0.597, P<0.001) that was not attributable to differences in socioeconomic status. A significant association was also found between BMD and European admixture (R2=0.065, P=0.042), but no such correlation was evident with BMI or the remaining body composition measurements. We discuss the implications of our findings for the potential use of this Hispanic population for admixture mapping.  相似文献   

3.
Genetic structure due to ancestry has been well documented among many divergent human populations. However, the ability to associate ancestry with genetic substructure without using supervised clustering has not been explored in more presumably homogeneous and admixed US populations. The goal of this study was to determine if genetic structure could be detected in a United States population from a single state where the individuals have mixed European ancestry. Using Bayesian clustering with a set of 960 single nucleotide polymorphisms (SNPs) we found evidence of population stratification in 864 individuals from New Hampshire that can be used to differentiate the population into six distinct genetic subgroups. We then correlated self-reported ancestry of the individuals with the Bayesian clustering results. Finnish and Russian/Polish/Lithuanian ancestries were most notably found to be associated with genetic substructure. The ancestral results were further explained and substantiated using New Hampshire census data from 1870 to 1930 when the largest waves of European immigrants came to the area. We also discerned distinct patterns of linkage disequilibrium (LD) between the genetic groups in the growth hormone receptor gene (GHR). To our knowledge, this is the first time such an investigation has uncovered a strong link between genetic structure and ancestry in what would otherwise be considered a homogenous US population.  相似文献   

4.
Skin pigmentation,biogeographical ancestry and admixture mapping   总被引:23,自引:0,他引:23  
Ancestry informative markers (AIMs) are genetic loci showing alleles with large frequency differences between populations. AIMs can be used to estimate biogeographical ancestry at the level of the population, subgroup (e.g. cases and controls) and individual. Ancestry estimates at both the subgroup and individual level can be directly instructive regarding the genetics of the phenotypes that differ qualitatively or in frequency between populations. These estimates can provide a compelling foundation for the use of admixture mapping (AM) methods to identify the genes underlying these traits. We present details of a panel of 34 AIMs and demonstrate how such studies can proceed, by using skin pigmentation as a model phenotype. We have genotyped these markers in two population samples with primarily African ancestry, viz. African Americans from Washington D.C. and an African Caribbean sample from Britain, and in a sample of European Americans from Pennsylvania. In the two African population samples, we observed significant correlations between estimates of individual ancestry and skin pigmentation as measured by reflectometry (R(2)=0.21, P<0.0001 for the African-American sample and R(2)=0.16, P<0.0001 for the British African-Caribbean sample). These correlations confirm the validity of the ancestry estimates and also indicate the high level of population structure related to admixture, a level that characterizes these populations and that is detectable by using other tests to identify genetic structure. We have also applied two methods of admixture mapping to test for the effects of three candidate genes (TYR, OCA2, MC1R) on pigmentation. We show that TYR and OCA2 have measurable effects on skin pigmentation differences between the west African and west European parental populations. This work indicates that it is possible to estimate the individual ancestry of a person based on DNA analysis with a reasonable number of well-defined genetic markers. The implications and applications of ancestry estimates in biomedical research are discussed.  相似文献   

5.
Contemporary genetic variation among Latin Americans human groups reflects population migrations shaped by complex historical, social and economic factors. Consequently, admixture patterns may vary by geographic regions ranging from countries to neighborhoods. We examined the geographic variation of admixture across the island of Puerto Rico and the degree to which it could be explained by historic and social events. We analyzed a census-based sample of 642 Puerto Rican individuals that were genotyped for 93 ancestry informative markers (AIMs) to estimate African, European and Native American ancestry. Socioeconomic status (SES) data and geographic location were obtained for each individual. There was significant geographic variation of ancestry across the island. In particular, African ancestry demonstrated a decreasing East to West gradient that was partially explained by historical factors linked to the colonial sugar plantation system. SES also demonstrated a parallel decreasing cline from East to West. However, at a local level, SES and African ancestry were negatively correlated. European ancestry was strongly negatively correlated with African ancestry and therefore showed patterns complementary to African ancestry. By contrast, Native American ancestry showed little variation across the island and across individuals and appears to have played little social role historically. The observed geographic distributions of SES and genetic variation relate to historical social events and mating patterns, and have substantial implications for the design of studies in the recently admixed Puerto Rican population. More generally, our results demonstrate the importance of incorporating social and geographic data with genetics when studying contemporary admixed populations.  相似文献   

6.
Self-reported race/ethnicity is frequently used in epidemiological studies to assess an individual’s background origin. However, in admixed populations such as Hispanic, self-reported race/ethnicity may not accurately represent them genetically because they are admixed with European, African and Native American ancestry. We estimated the proportions of genetic admixture in an ethnically diverse population of 396 mothers and 188 of their children with 35 ancestry informative markers (AIMs) using the STRUCTURE version 2.2 program. The majority of the markers showed significant deviation from Hardy-Weinberg equilibrium in our study population. In mothers self-identified as Black and White, the imputed ancestry proportions were 77.6% African and 75.1% European respectively, while the racial composition among self-identified Hispanics was 29.2% European, 26.0% African, and 44.8% Native American. We also investigated the utility of AIMs by showing the improved fitness of models in paraoxanase-1 genotype-phenotype associations after incorporating AIMs; however, the improvement was moderate at best. In summary, a minimal set of 35 AIMs is sufficient to detect population stratification and estimate the proportion of individual genetic admixture; however, the utility of these markers remains questionable.  相似文献   

7.
The population of Argentina is the result of the intermixing between several groups, including Indigenous American, European and African populations. Despite the commonly held idea that the population of Argentina is of mostly European origin, multiple studies have shown that this process of admixture had an impact in the entire Argentine population. In the present study we characterized the distribution of Indigenous American, European and African ancestry among individuals from different regions of Argentina and evaluated the level of discrepancy between self-reported grandparental origin and genetic ancestry estimates. A set of 99 autosomal ancestry informative markers (AIMs) was genotyped in a sample of 441 Argentine individuals to estimate genetic ancestry. We used non-parametric tests to evaluate statistical significance. The average ancestry for the Argentine sample overall was 65% European (95%CI: 63–68%), 31% Indigenous American (28–33%) and 4% African (3–4%). We observed statistically significant differences in European ancestry across Argentine regions [Buenos Aires province (BA) 76%, 95%CI: 73–79%; Northeast (NEA) 54%, 95%CI: 49–58%; Northwest (NWA) 33%, 95%CI: 21–41%; South 54%, 95%CI: 49–59%; p<0.0001] as well as between the capital and immediate suburbs of Buenos Aires city compared to more distant suburbs [80% (95%CI: 75–86%) versus 68% (95%CI: 58–77%), p = 0.01]. European ancestry among individuals that declared all grandparents born in Europe was 91% (95%CI: 88–94%) compared to 54% (95%CI: 51–57%) among those with no European grandparents (p<0.001). Our results demonstrate the range of variation in genetic ancestry among Argentine individuals from different regions in the country, highlighting the importance of taking this variation into account in genetic association and admixture mapping studies in this population.  相似文献   

8.
Social and historical factors account for much of the variation in European ancestry among different Black American populations, including that of McNary, Arizona. The Black population of McNary is socioculturally and geographically isolated. Admixture estimates based upon reflectometry and serological data suggest that this population has less than 5% European ancestry. Anthropometric and hemoglobin data also suggest that this population is more African in ancestry than other Black American populations. Admixture estimates for the population are complicated by several factors. Genetic drift has probably affected Black McNary; estimated effective population size (Ne) is 52.11 and the coefficient of breeding isolation is less than 50. Frequencies of the alleles B, O, and r support this hypothesis; they are quite atypical for a Black American group. Selective migration and occupational selection may also have influenced the current genetic composition of Black McNary. Over 80% of the Black residents of McNary were born in backwoods lumbering towns in the American South. Most Black families in McNary trace their economic reliance on lumbering back several generations. Historical sources and demographic data from Black McNary suggest that Southern Black millworking families formed an endogamous unit that produced this caste, which has a relatively small amount of European ancestry.  相似文献   

9.
Obesity is a heritable trait and a major risk factor for highly prevalent common diseases such as hypertension and type 2 diabetes. Previously we showed that BMI was positively correlated with African ancestry among the African Americans (AAs) in the US National Heart, Lung, and Blood Institute's Family Blood Pressure Program (FBPP). In a set of 1,344 unrelated AAs, using Individual Ancestry (IA) estimates at 284 marker locations across the genome, we now present a quantitative admixture mapping analysis of BMI. We used a set of unrelated individuals from Nigeria to represent the African ancestral population and the European American (EA) in the FBPP as the European ancestral population. The analysis was based on a common set of 284 microsatellite markers genotyped in all three groups. We considered the quantitative trait, BMI, as the response variable in a regression analysis with the marker location specific excess European ancestry as the explanatory variable. After suitably adjusting for different covariates such as sex, age, and network, we found strong evidence for a positive association with European ancestry at chromosome locations 3q29 and 5q14 and a negative association on chromosome 15q26. To our knowledge, this is the largest quantitative admixture mapping effort in terms of sample size and marker locus involvement for the trait. These results suggest that these regions may harbor genes influencing BMI in the AA population.  相似文献   

10.
European population genetic substructure was examined in a diverse set of >1,000 individuals of European descent, each genotyped with >300 K SNPs. Both STRUCTURE and principal component analyses (PCA) showed the largest division/principal component (PC) differentiated northern from southern European ancestry. A second PC further separated Italian, Spanish, and Greek individuals from those of Ashkenazi Jewish ancestry as well as distinguishing among northern European populations. In separate analyses of northern European participants other substructure relationships were discerned showing a west to east gradient. Application of this substructure information was critical in examining a real dataset in whole genome association (WGA) analyses for rheumatoid arthritis in European Americans to reduce false positive signals. In addition, two sets of European substructure ancestry informative markers (ESAIMs) were identified that provide substantial substructure information. The results provide further insight into European population genetic substructure and show that this information can be used for improving error rates in association testing of candidate genes and in replication studies of WGA scans.  相似文献   

11.
The large and diverse population of Latin America is potentially a powerful resource for elucidating the genetic basis of complex traits through admixture mapping. However, no genome-wide characterization of admixture across Latin America has yet been attempted. Here, we report an analysis of admixture in thirteen Mestizo populations (i.e. in regions of mainly European and Native settlement) from seven countries in Latin America based on data for 678 autosomal and 29 X-chromosome microsatellites. We found extensive variation in Native American and European ancestry (and generally low levels of African ancestry) among populations and individuals, and evidence that admixture across Latin America has often involved predominantly European men and both Native and African women. An admixture analysis allowing for Native American population subdivision revealed a differentiation of the Native American ancestry amongst Mestizos. This observation is consistent with the genetic structure of pre-Columbian populations and with admixture having involved Natives from the area where the Mestizo examined are located. Our findings agree with available information on the demographic history of Latin America and have a number of implications for the design of association studies in population from the region.  相似文献   

12.
European Americans are often treated as a homogeneous group, but in fact form a structured population due to historical immigration of diverse source populations. Discerning the ancestry of European Americans genotyped in association studies is important in order to prevent false-positive or false-negative associations due to population stratification and to identify genetic variants whose contribution to disease risk differs across European ancestries. Here, we investigate empirical patterns of population structure in European Americans, analyzing 4,198 samples from four genome-wide association studies to show that components roughly corresponding to northwest European, southeast European, and Ashkenazi Jewish ancestry are the main sources of European American population structure. Building on this insight, we constructed a panel of 300 validated markers that are highly informative for distinguishing these ancestries. We demonstrate that this panel of markers can be used to correct for stratification in association studies that do not generate dense genotype data.  相似文献   

13.
Polymorphism of classical HLA-A, HLA-B, HLA-C, HLA-DR, and HLA-DQ genes differs greatly among populations, both in frequencies and in the presence of alleles and haplotypes particular to population groups, making these genes powerful tools for the study of origins of populations and their degree of admixture. Antigen, allele, and haplotype frequencies, together with linkage disequilibrium patterns, are reported for 2 populations in the southern Brazilian state of Paraná, one of predominantly European ancestry (white), the other of predominantly African and European ancestry (mulatto). Genetic distance estimates between the 2 groups and other populations studied previously, and of degree of admixture, were performed. In accordance with phenotypic classification, the white population is of predominantly European origin (80.6%), with a smaller contribution of African (12.5%) and Amerindian (7.0%) genes. The mulatto population consists of African (49.5%) and European (41.8%) ancestry, with a smaller but significant contribution of Amerindian (8.7%) ancestry. On the basis of history and population genetics, there is controversy regarding the Amerindian contribution to Paraná's gene pool. These results provide a better picture of Paraná's ethnic constitution and on the Amerindian contribution to the white and mulatto populations.  相似文献   

14.
The processes of genetic admixture determine the haplotype structure and linkage disequilibrium patterns of the admixed population, which is important for medical and evolutionary studies. However, most previous studies do not consider the inherent complexity of admixture processes. Here we proposed two approaches to explore population admixture dynamics, and we demonstrated, by analyzing genome-wide empirical and simulated data, that the approach based on the distribution of chromosomal segments of distinct ancestry (CSDAs) was more powerful than that based on the distribution of individual ancestry proportions. Analysis of 1,890 African Americans showed that a continuous gene flow model, in which the African American population continuously received gene flow from European populations over about 14 generations, best explained the admixture dynamics of African Americans among several putative models. Interestingly, we observed that some African Americans had much more European ancestry than the simulated samples, indicating substructures of local ancestries in African Americans that could have been caused by individuals from some particular lineages having repeatedly admixed with people of European ancestry. In contrast, the admixture dynamics of Mexicans could be explained by a gradual admixture model in which the Mexican population continuously received gene flow from both European and Amerindian populations over about 24 generations. Our results also indicated that recent gene flows from Sub-Saharan Africans have contributed to the gene pool of Middle Eastern populations such as Mozabite, Bedouin, and Palestinian. In summary, this study not only provides approaches to explore population admixture dynamics, but also advances our understanding on population history of African Americans, Mexicans, and Middle Eastern populations.  相似文献   

15.
Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas—70% of the European ancestry in today’s African Americans dates back to European gene flow happening only 7–8 generations ago.  相似文献   

16.
Variation in gene expression is a fundamental aspect of human phenotypic variation. Several recent studies have analyzed gene expression levels in populations of different continental ancestry and reported population differences at a large number of genes. However, these differences could largely be due to non-genetic (e.g., environmental) effects. Here, we analyze gene expression levels in African American cell lines, which differ from previously analyzed cell lines in that individuals from this population inherit variable proportions of two continental ancestries. We first relate gene expression levels in individual African Americans to their genome-wide proportion of European ancestry. The results provide strong evidence of a genetic contribution to expression differences between European and African populations, validating previous findings. Second, we infer local ancestry (0, 1, or 2 European chromosomes) at each location in the genome and investigate the effects of ancestry proximal to the expressed gene (cis) versus ancestry elsewhere in the genome (trans). Both effects are highly significant, and we estimate that 12±3% of all heritable variation in human gene expression is due to cis variants.  相似文献   

17.
We report the estimated allele frequencies for 13 and 14 microsatellite loci in two populations of Minas Gerais, Brazil as follows: Belo Horizonte (the capital) and Marinhos (an African‐derived community). Analysis of the African, Amerindian, and European genetic contributions to both populations, together with historical information, revealed distinct differences between the two populations. Estimates for Belo Horizonte revealed a higher‐European (66%) than African (32%) contribution, and a minimal Amerindian contribution. These results are consistent with the peopling of the city mainly by people from the Minas Gerais hinterland, a people highly admixed but with more European ancestry. Estimates for Marinhos confirmed the high‐African component of the population. However, a temporal analysis of two datasets—CURRENT (representing the population living in Marinhos today) and ORIGINAL (representing families, who have lived in Marinhos since the onset of the 20th century),—identified a diminishing of the population's African ancestry from 92% in the ORIGINAL group to 67% in the CURRENT group. This change is here interpreted as a consequence of the growing migration into the village of people with more European ancestry and subsequent admixture with the local population. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Genetic ancestry and environmental factors may contribute to the ethnic differences in risk of coronary heart disease (CHD), metabolic syndrome (MS) or its individual components. The population of the Central Valley of Costa Rica offers a unique opportunity to assess the role of genetic ancestry in these chronic diseases because it derived from the admixture of a relatively small number of founders of Southern European, Amerindian, and West African origin. We aimed to determine whether genetic ancestry is associated with risk of myocardial infarction (MI), MS and its individual components in the Central Valley of Costa Rica. We genotyped 39 ancestral informative markers in cases (n = 1,998) with a first non-fatal acute MI and population-based controls (n = 1,998) matched for age, sex, and area of residence, to estimate individual ancestry proportions. Odds ratios (ORs) and 95% confidence intervals (95% CI) were estimated using conditional (MI) and unconditional (MS and its components) logistic regression adjusting for relevant confounders. Mean individual ancestry proportions in cases and controls were 57.5 versus 57.8% for the Southern European, 38.4 versus 38.3% for the Amerindian and 4.1 versus 3.8% for the West African ancestry. Compared with Southern European ancestry, each 10% increase in West African ancestry was associated with a 29% increase in MI, OR (95% CI) = 1.29 (1.07, 1.56), and with a 30% increase on the risk of hypertension, OR (95% CI) = 1.30 (1.00, 1.70). Each 10% increase in Amerindian ancestry was associated with a 14% increase on the risk of MS, OR (95% CI) = 1.14 (1.00, 1.30), and 20% increase on the risk of impaired fasting glucose, OR (95% CI) = 1.20 (1.01, 1.42). These results show that the high variability of admixture proportions in the Central Valley population offers a unique opportunity to uncover the genetic basis of ethnic differences on the risk of disease.  相似文献   

19.
The invasion of Africanized honeybees (Apis mellifera L.) in the Americas provides a window of opportunity to study the dynamics of secondary contact of subspecies of bees that evolved in allopatry in ecologically distinctive habitats of the Old World. We report here the results of an 11-year mitochondrial DNA survey of a feral honeybee population from southern United States (Texas). The mitochondrial haplotype (mitotype) frequencies changed radically during the 11-year study period. Prior to immigration of Africanized honeybees, the resident population was essentially of eastern and western European maternal ancestry. Three years after detection of the first Africanized swarm there was a mitotype turnover in the population from predominantly eastern European to predominantly A. m. scutellata (ancestor of Africanized honeybees). This remarkable change in the mitotype composition coincided with arrival of the parasitic mite Varroa destructor, which was likely responsible for severe losses experienced by colonies of European ancestry. From 1997 onward the population stabilized with most colonies of A. m. scutellata maternal origin.  相似文献   

20.
The Puerto Rico population may be modeled as an admixed population with contributions from three continents: Sub-Saharan Africa, Ancient America, and Europe. Extending the study of the genetics of inflammatory bowel disease (IBD) to an admixed population such as Puerto Rico has the potential to shed light on IBD genes identified in studies of European populations, find new genes contributing to IBD susceptibility, and provide basic information on IBD for the care of US patients of Puerto Rican and Latino descent. In order to study the association between immune-related genes and Crohn’s disease (CD) and ulcerative colitis (UC) in Puerto Rico, we genotyped 1159 Puerto Rican cases, controls, and family members with the ImmunoChip. We also genotyped 832 subjects from the Human Genome Diversity Panel to provide data for estimation of global and local continental ancestry. Association of SNPs was tested by logistic regression corrected for global continental descent and family structure. We observed the association between Crohn’s disease and NOD2 (rs17313265, 0.28 in CD, 0.19 in controls, OR 1.5, p = 9×10−6) and IL23R (rs11209026, 0.026 in CD, 0.0.071 in controls, OR 0.4, p = 3.8×10−4). The haplotype structure of both regions resembled that reported for European populations and “local” continental ancestry of the IL23R gene was almost entirely of European descent. We also observed suggestive evidence for the association of the BAZ1A promoter SNP with CD (rs1200332, 0.45 in CD, 0.35 in controls, OR 1.5, p = 2×10−6). Our estimate of continental ancestry surrounding this SNP suggested an origin in Ancient America for this putative susceptibility region. Our observations underscored the great difference between global continental ancestry and local continental ancestry at the level of the individual gene, particularly for immune-related loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号