首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes the effects of NH4Cl, CH3NH2, and chloroquine on class I and II MHC-restricted Ag presentation. OVA-specific T-T hybridomas were used to detect processed OVA in association with class I, H-2Kb, and class II, I-Ad/b, molecules on a B lymphoblastoid APC. OVA, internalized by APC under hypertonic conditions, was presented in association with class I and II MHC molecules. Treating the APC with NH4Cl or CH3NH2 inhibited class I- and II-restricted Ag presentation. In contrast, chloroquine markedly inhibited class II, but not class I-restricted Ag presentation. Controls indicated that drug-treated APC were fully competent to interact with T cells and present processing-independent antigenic peptides in association with both class I and II MHC molecules. NH4Cl and CH3NH2 did not inhibit the uptake of radiolabeled Ag by the APC. After the proteolytic removal of H-2Kb from the surface of APC, NH4Cl and CH3NH2-treated and control APC regenerated identical amounts of surface H-2Kb and this regeneration required de novo protein synthesis. These latter results indicate that NH4Cl and CH3NH2 can inhibit Ag presentation without affecting the synthesis, transport, or surface expression of H-2Kb. Also, NH4Cl did not affect the transport of H-2Db to the surface of mutant RMA-S cells that were cultured with exogenous peptides. Taken together these results strongly suggest that NH4Cl and CH3NH2 but not chloroquine can inhibit a critical and early intracellular step in class I-restricted Ag presentation while simultaneously inhibiting class II-restricted Ag presentation.  相似文献   

2.
3.
Cell-based vaccines consisting of invariant chain-negative tumor cells transfected with syngeneic MHC class II (MHC II) and costimulatory molecule genes are prophylactic and therapeutic agents for the treatment of murine primary and metastatic cancers. Vaccine efficacy is due to direct presentation of endogenously synthesized, MHC II-restricted tumor peptides to CD4+ T cells. Because the vaccine cells lack invariant chain, we have hypothesized that, unlike professional APC, the peptide-binding groove of newly synthesized MHC II molecules may be accessible to peptides, allowing newly synthesized MHC II molecules to bind peptides that have been generated in the proteasome and transported into the endoplasmic reticulum via the TAP complex. To test this hypothesis, we have compared the Ag presentation activity of multiple clones of TAP-negative and TAP-positive tumor cells transfected with I-Ak genes and the model Ag hen egg white lysozyme targeted to the endoplasmic reticulum or cytoplasm. Absence of TAP does not diminish Ag presentation of three hen egg white lysozyme epitopes. Likewise, cells treated with proteasomal and autophagy inhibitors are as effective APC as untreated cells. In contrast, drugs that block endosome function significantly inhibit Ag presentation. Coculture experiments demonstrate that the vaccine cells do not release endogenously synthesized molecules that are subsequently endocytosed and processed in endosomal compartments. Collectively, these data indicate that vaccine cell presentation of MHC II-restricted endogenously synthesized epitopes occurs via a mechanism independent of the proteasome and TAP complex, and uses a pathway that overlaps with the classical endosomal pathway for presentation of exogenously synthesized molecules.  相似文献   

4.
Ag in the extracellular fluids can be internalized, processed, and presented in association with class I MHC molecules on specialized APC in normal spleen. We examine the fate of these APC after they present Ag to a CTL. When splenocytes present exogenous OVA to CTL, their ability to subsequently present native Ag in association with both class I and class II molecules is inhibited. CTL do not inhibit the ability of splenocytes to present processing independent peptides with class I or class II molecules. Inhibition of Ag presentation is only observed in the presence of the specific Ag recognized by the CTL. This inhibition is MHC-restricted. In the presence of specific Ag, CTL inhibit the ability of APC to present unrelated Ag. However, bystander APC are not affected by activated CTL. Taken together these results indicate that when APC present exogenous Ag to CTL, they are inhibited or killed. The CTL that mediates this activity has a conventional CD4-CD8+ phenotype and utilizes a TCR-alpha beta. The potential significance of these findings and their possible relationship to phenomena associated with Ts cells are discussed.  相似文献   

5.
We have evaluated the relative contributions of the extracellular and cytoplasmic domains of MHC class II molecules in determining the Ag-processing requirements for class II-restricted Ag presentation to T cells. Hybrid genes were constructed to encode a heterodimeric I-Ak molecule in which the extracellular portion of the molecule resembled wild type I-Ak but where the connecting stalk, transmembrane and cytoplasmic domains of both the alpha- and beta-chain were derived from the class I molecule H-2Dd. Mutant I-Ak molecules were expressed as heterodimeric membrane glycoproteins reactive with mAb specific for wild type I-Ak. Fibroblast and B lymphoma cells expressing either wild type or mutant I-Ak molecules were able to process and present hen egg lysozyme (HEL) and conalbumin to Ag-specific, I-Ak-restricted, T cell hybridomas or clones. The mutant-expressing cells presented native and peptide Ag less efficiently than the wild type-expressing cells, suggesting that the disparity in presentation efficiency was not due to a difference in Ag processing. CD4 interaction was intact on the mutant I-Ak molecules. Presentation of native Ag by mutant and wild type-I-Ak-expressing cells was abolished by preincubation with chloroquine, or after paraformaldehyde fixation. After transfection of a cDNA encoding the gene for HEL, neither mutant nor wild type-I-Ak-expressing cells presented endogenously synthesized HEL to a specific T hybrid. Newly synthesized mutant I-Ak molecules were associated with invariant chain. These data demonstrate the ability of hybrid class II molecules to associate intracellularly with invariant chain and degraded foreign Ag in a conventional class II-restricted processing pathway indicating that the extracellular domains of class II molecules play a dominant role in controlling these Ag-processing requirements.  相似文献   

6.
T lymphocytes usually recognize endogenously encoded Ag in the context of MHC class I molecules, whereas exogenous Ag is usually presented by MHC class II molecules. In vitro studies in model systems suggest that presentation of endogenous Ag by class II molecules is inhibited by the association of class II with its invariant chain (Ii). In the present study we test this hypothesis in an in vivo system in which endogenously encoded tumor peptides are presented by tumor cell MHC class II molecules. In this system, transfection of syngeneic MHC class II genes (Aak and Abk) into a highly malignant, Ii negative, mouse tumor (SaI sarcoma) produces an immunogenic tumor (SaI/Ak) that is rejected by the autologous host. The class II+ transfectants also effectively immunize autologous A/J mice against a subsequent challenge of wild-type class II- tumor cells. We have hypothesized that the SaI/Ak transfectants induce protective immunity because they function as APC for endogenously synthesized tumor peptides, and thereby stimulate tumor-specific Th cells, by-passing the need for professional APC. To test the role of Ii as an inhibitor of presentation of endogenous peptides, SaI/Ak tumor cells were supertransfected with Ii gene (SaI/Ak/Ii cells), and the tumorigenicity of the resulting cells determined. Nine SaI/Ak/Ii clones were tested, and their malignancy compared with that of SaI/Ak and SaI cells. Seven of the nine class II+/Ii+ tumor cells are more malignant than class II+/Ii- tumor cells in autologous A/J mice. Expression of Ii therefore restores the malignant phenotype, presumably by preventing presentation of endogenously synthesized tumor peptides. Ii therefore regulates Ag presentation and can be a critical parameter for in vivo tumor immunity.  相似文献   

7.
Class II-restricted murine T cell clones specific for the immunogenic determinant L-tyrosine-p-azobenzenearsonate failed to proliferate to Ag presented by L cell lines transfected with and expressing the appropriate class II genes, but are activated to kill the APC in an Ag-dependent, MHC-restricted manner. Inhibition of APC proliferation was used as an assay to determine the relative contributions of polymorphic sites on the class II alpha- and beta-chains to MHC-restricted activation of I-A beta k-restricted cloned T cells. Transfectants expressing A beta k in conjunction with the alpha chain of k, u, or d were equally effective APCs, whereas transfectants expressing A beta u were completely ineffective, implicating the beta-chain as more critical for the presentation of L-tyrosine-p-azobenzenearsonate. Site-directed mutagenesis of polymorphic positions in the beta chain revealed a remarkable stringency for the k haplotype, in contrast to the relaxed alpha-chain requirement. These results, in conjunction with others, indicate that the relative contribution of polymorphic sites on class II alpha- and beta-chains to T cell Ag recognition can differ markedly, and, furthermore, may vary as a function of the Ag.  相似文献   

8.
Following antigenic challenge, MHC-restricted T cell responses are directed against a few dominant antigenic epitopes. Here, evidence is provided demonstrating the importance of APC in modulating the hierarchy of MHC class II-restricted T cell responses. Biochemical analysis of class II:peptide complexes in B cells revealed the presentation of a hierarchy of peptides derived from the Ig self Ag. Functional studies of kappa peptide:class II complexes from these cells indicated that nearly 20-fold more of an immunodominant epitope derived from kappa L chains was bound to class II DR4 compared with a subdominant epitope from this same Ag. In vivo, T cell responses were preferentially directed against the dominant kappa epitope as shown using Ig-primed DR4 transgenic mice. The bias in kappa epitope presentation was not linked to differences in class II:kappa peptide-binding affinity or epitope editing by HLA-DM. Rather, changes in native Ag structure were found to disrupt presentation of the immunodominant but not the subdominant kappa epitope; Ag refolding restored kappa epitope presentation. Thus, Ag tertiary conformation along with processing reactions within APC contribute to the selective presentation of a hierarchy of epitopes by MHC class II molecules.  相似文献   

9.
H2-O/HLA-DO are MHC class II accessory molecules that modulate exogenous Ag presentation. Most class II accessory molecules are expressed in all professional APC; however, H2-O is only expressed in B cells and medullary thymic epithelial cells. Because B cells present exogenous Ags and superantigens (SAgs), and medullary thymic epithelial cells are specialized APC for self Ags during negative selection in the thymus, we have hypothesized that H2-O might play a role in MHC class II-restricted SAg and self Ag presentation. In this study, we demonstrate that H2-O expression inhibits presentation of the bacterial SAgs staphylococcal enterotoxins A and B to four SAg-reactive T hybridoma cells. In contrast, H2-O has no effect on presentation of endogenous self Ags, as measured by tumorigenicity in vivo and Ag presentation to three self Ag-specific T hybridoma cells. Additional experiments suggest that H2-O inhibits presentation of exogenous Ags by both newly synthesized and recycling MHC class II molecules. These data suggest H2-O may have a physiological role in tolerance induction and SAg-mediated toxic shock.  相似文献   

10.
A vertebrate immune response is initiated by the presentation of foreign protein Ag to MHC class II-restricted T lymphocytes by specialized APC. Presentation of self-peptides in association with MHC class II molecules is also necessary for the induction of T cell tolerance. It is important to understand whether functionally divergent APC are responsible for delivering these distinct signals to class II-restricted T cells. Here we examine the ability of I-Ad surface molecules expressed in diverse cell types to stimulate I-Ad-restricted T cells. Recipients included J558L myeloma cells and EL4 lymphoma cells expressing barely detectable or undetectable levels of Ii chain mRNA. This allowed us to examine the influence of Ii expression on the presentation of intracellular Ag and thus test the hypothesis that Ii chain is necessary to prevent access of self-peptides to newly synthesized class II molecules. Ii chain expression did not restore the ability of transformants to process and present soluble protein Ag. A striking result was the finding that cells showing a defect in the exogenous class II presentation pathway were capable of functioning as stimulators when they expressed intracellular secreted but not signal-less V-CH3b Ag. Thus, so-called professional APC that can capture and process exogenous protein Ag may express a specialized set of proteins not required for the presentation of self-peptides.  相似文献   

11.
Previous studies have shown that glutaraldehyde-fixed cells can present fragmented, but not native, Ag to class II-restricted T cells. This presumably occurs via direct binding of peptides to class II molecules at the cell surface. More recently, it has been shown that viable target cells can present peptides and endogenous, but not exogenous, protein Ag in association with class I MHC molecules to CTL. We have derived CTL specific for a chicken OVA peptide (OVA258-276) recognized in association with H-2Kb. These CTL recognize target cells that endogenously synthesize OVA and cells "loaded" with native OVA but fail to recognize target cells in the presence of exogenous native OVA. Thus, OVA must be intracellularly located to be processed and presented for CTL recognition. It remains unclear, however, whether exogenous peptides require internalization and further processing by target cells or are able to associate directly with class I molecules at the cell surface for CTL recognition. We provide evidence that glutaraldehyde-fixed cells can present synthetic peptides to H-2Kb- and H-2Db-restricted CTL and that such presentation does not require internalization or processing. The peptides used range in size from 16 to 48 amino acids in length. In contrast, glutaraldehyde-fixed cells are incapable of presenting Ag to CTL specific for influenza nucleoprotein and OVA if the cells are fixed within 1 h of viral influenza infection or loading with OVA. Thus, CTL recognition of antigenic peptides appears to occur via direct binding of peptides to class I molecules at the cell surface and does not require any intracellular processing events.  相似文献   

12.
We have developed cell-based cancer vaccines that activate anti-tumor immunity by directly presenting endogenously synthesized tumor antigens to CD4+ T helper lymphocytes via MHC class II molecules. The vaccines are non-conventional antigen-presenting cells because they express MHC class II, do not express invariant chain or H-2M, and preferentially present endogenous antigen. To further improve therapeutic efficacy we have studied the intracellular trafficking pathway of MHC class II molecules in the vaccines using endoplasmic reticulum-localized lysozyme as a model antigen. Experiments using endocytic and cytosolic pathway inhibitors (chloroquine, primaquine, and brefeldin A) and protease inhibitors (lactacystin, LLnL, E64, and leupeptin) indicate antigen presentation depends on the endocytic pathway, although antigen degradation is not mediated by endosomal or proteasomal proteases. Because H2-M facilitates presentation of exogenous antigen via the endocytic pathway, we investigated whether transfection of vaccine cells with H-2M could potentiate endogenous antigen presentation. In contrast to its role in conventional antigen presentation, H-2M had no effect on endogenous antigen presentation by vaccine cells or on vaccine efficacy. These results suggest that antigen/MHC class II complexes in the vaccines may follow a novel route for processing and presentation and may produce a repertoire of class II-restricted peptides different from those presented by professional APC. The therapeutic efficacy of the vaccines, therefore, may reside in their ability to present novel tumor peptides, consequently activating tumor-specific CD4+ T cells that would not otherwise be activated.  相似文献   

13.
Bispecific heteroconjugate antibodies can bind soluble protein Ag to APC and thereby enhance Ag presentation. We used such antibodies to bind hen egg lysozyme (HEL) to various structures on the surface of normal splenic B cells to determine which structures would provide the best targets for enhanced presentation. We found that HEL was presented efficiently to hybridoma T cells if bound to sIgD, sIgM, or class I or II MHC molecules, but not at all if bound to Fc gamma RII, or B220 molecules on B cells. The efficiency of presentation of HEL was measured as a function of the amount of 125I-HEL bound per cell. HEL was presented with 5 to 10 times greater efficiency when bound to sIg, than when bound to MHC molecules. When compared on the basis of the amount of HEL bound, sIgD and sIgM functioned equally as target structures, as did class I and class II MHC molecules. Large amounts of HEL bound to B220, but no presentation resulted, indicating that focusing HEL to the APC surface was not sufficient for presentation to occur. HEL was internalized rapidly and in large amounts when bound to sIgD or sIgM, but slowly and in small amounts, when bound to class I or class II MHC molecules. Thus, a rapid rate of internalization may in part explain the high efficiency of Ag presentation after binding to sIg. However, the small amount of HEL internalized via MHC molecules was utilized efficiently for presentation. These results indicate that sIgM and sIgD serve equally on normal B cells to focus and internalize Ag and enhance Ag presentation, but that class I or class II MHC molecules can also be used to internalize Ag and enhance Ag presentation, perhaps by a separate intracellular processing pathway.  相似文献   

14.
Liposome-encapsulated protein Ag were used to dissect the roles of various subcellular compartments in Ag processing for class I and class II MHC-restricted presentation. Macrophages exhibited efficient processing of Ag encapsulated in acid-resistant dioleoylphosphatidylcholine/dioleoylphosphatidylserine liposomes, which sequester their contents from potential endosomal processing events and release them only after delivery to lysosomes. Lysosomal processing was demonstrated for all four Ag studied (OVA, murine hemoglobin, bovine ribonuclease A, and hen egg lysozyme), establishing the recycling of immunogenic peptides from lysosomes after Ag processing. These acid-resistant liposomes did not engender class I processing. Ag encapsulated within acid-sensitive dioleoylphosphatidylethanolamine/palmitoylhomocysteine liposomes were also processed via the class II pathway. Of the four Ag encapsulated in liposomes, one, OVA, was tested for ability to stimulate a class I-specific response. OVA in acid-resistant liposomes did not engender a class I-specific response. In contrast, OVA encapsulated in acid-sensitive liposomes was presented by class I molecules, albeit less efficiently than it was presented by class II molecules. We interpret this to be the result of the release of a minor portion of the encapsulated Ag into the cytosol.  相似文献   

15.
Generation of class I MHC-restricted T-T hybridomas   总被引:3,自引:0,他引:3  
In this report we describe a system for the generation of functional, class I MHC-restricted, T-T hybridomas. The BW5147 cell line was transfected with the CD8 gene. BW5147 transfectants were obtained that stably expressed CD8 and this expression was maintained after somatic cell hybridization with activated T lymphocytes. To determine whether the stable expression of CD8 would facilitate the generation of class I MHC-specific T-T hybridomas, the transfected cells were fused with alloreactive T cells and the resultant hybrids were screened for their ability to produce lymphokines in response to antigenic stimulation. Somatic cell hybridizations with BW5147-CD8 transfectants give rise to a much higher frequency of class I MHC-specific T-T hybridomas relative to parallel fusions with BW5147. To determine whether the BW5147-CD8 transfectants would also support the generation of Ag-specific, class I MHC-restricted T-T hybridomas, they were fused with OVA-specific CTL. Several T-T hybrid clones were identified that produced lymphokines after stimulation with a transfected APC that was synthesizing OVA, or with a tryptic digest of OVA in the presence of syngeneic APC. The stimulation by Ag was MHC-restricted and mapped to the Kb molecule. An anti-CD8 mAb inhibited the stimulation of these hybridomas by Ag plus APC, whereas their stimulation by mitogen was unaffected. Cytolytic activity was not detected when several of the OVA-specific or alloreactive hybridomas were tested for their ability to kill target cells bearing the appropriate Ag. These results demonstrate that the BW5147-CD8 transfectants allow the generation of class I MHC-restricted T-T hybridomas. The potential utility of this system is discussed.  相似文献   

16.
MHC class II-restricted tumor Ags presented by class II(+) tumor cells identified to date are derived from proteins expressed in the cytoplasm or plasma membrane of tumor cells. It is unclear whether MHC class II(+) tumor cells present class II-restricted epitopes derived from other intracellular compartments, such as nuclei and/or mitochondria, and whether class II(+) tumor cells directly present Ag in vivo. To address these questions, a model Ag, hen egg lysozyme, was targeted to various subcellular compartments of mouse sarcoma cells, and the resulting cells were tested for presentation of three lysozyme epitopes in vitro and for presentation of nuclear Ag in vivo. In in vitro studies, Ags localized to all tested compartments (nuclei, cytoplasm, mitochondria, and endoplasmic reticulum) are presented in the absence invariant chain and H-2M. Coexpression of invariant chain and H-2M inhibit presentation of some, but not all, of the epitopes. In vivo studies demonstrate that class II(+) tumor cells, and not host-derived cells, are the predominant APC for class II-restricted nuclear Ags. Because class II(+) tumor cells are effective APC in vivo and probably present novel tumor Ag epitopes not presented by host-derived APC, their inclusion in cancer vaccines may enhance activation of tumor-reactive CD4(+) T cells.  相似文献   

17.
The recognition of antigen-presenting cells (APCs) by T helper (TH) cells occurs in an antigen (Ag)-specific, MHC-restricted manner. Recent evidence, however, suggests that other interaction molecules may also be involved in TH:APC interaction in addition to the T-cell receptor (Ti) and class II or la antigens. We chose, therefore, to examine the role of various interaction molecules (Ia, Ti, L3T4, and LFA-1) in Ag presentation using several TH clones with distinct recognition patterns (self-Ia, self-Ia/Ag, and allogenic Ia). We describe here the use of a rapid clustering assay to study the initial binding events that occur between TH cells and APCs of various types. In all combinations of TH cells and APCs, conjugate formation was both Ag-specific and MHC-restricted. Moreover, with one exception cell clustering was prevented by the addition of monoclonal antibodies (mAb) against either the T-cell receptor or class II MHC molecules. In contrast, mAb to L3T4 and LFA-1 generally failed to inhibit cluster formation even though T-cell proliferation was profoundly inhibited. The relative importance of these interaction molecules in conjugate formation appeared to depend on the APC type as well as on the T-cell clone used. The implications of these findings for the mechanisms of Ag presentation and T-cell activation are discussed.  相似文献   

18.
Protein synthesis in antigen processing   总被引:4,自引:0,他引:4  
Recent studies indicate that Ag pass through a chloroquine-sensitive intracellular pathway in accessory cells before they are recognized by class II-restricted T cells. Our results indicate that this is also true for insulin. Unexpectedly, we find that protein synthesis is required for optimal accessory cell-dependent processing of insulin and other proteins by adherent macrophages. Treatment of APC with inhibitors of protein synthesis, before and during exposure to Ag, inhibits their subsequent ability to activate murine T cell hybridomas. Experiments are described which suggest that this effect is localized to intracellular processing of Ag rather than uptake or presentation, per se. Inhibition is reversible, and is not observed in special situations where intracellular processing of Ag is not required. A distinct lag period is required for inhibition of processing after inhibition of macrophage protein synthesis. One possible interpretation is that protein synthesis is necessary for maintenance of a labile protein crucial for intracellular processing of Ag. Alternatively, the susceptibility of processing to inhibitors of protein synthesis may reflect an obligate intracellular association of Ag and newly synthesized class II histocompatibility molecules.  相似文献   

19.
The nature of the gene products encoded or regulated by the minor lymphocyte-stimulating (Mls) loci remains enigmatic despite extensive experimental evaluation. This work tested the hypothesis that the Mlsa genotype, when compared to the Mlsb genotype, facilitates Ag presentation to class II-restricted T cells. Titrated numbers of H-2-identical, Mls-disparate APC were used to stimulate proliferation of autoreactive, alloreactive, or Ag-specific class II-restricted T cell clones or lines. Apparent preferential presentation by Mlsa vs Mlsb APC obtained from H-2-identical strains was seen infrequently, and when observed, analysis with the use of APC from recombinant inbred lines revealed that preferential presentation did not correlate with the Mls genotype of the APC. These studies show that the Mlsa genotype does not influence overall Ag presentation to class II-restricted T cells.  相似文献   

20.
APCs, like T cells, are affected by calcineurin inhibitors. In this study, we show that calcineurin inhibitors efficiently block MHC-restricted exogenous Ag presentation in vivo. Mice were injected with clinical doses of tacrolimus (FK-506) followed by soluble OVA, and dendritic cells (DCs) were isolated from lymph nodes and spleens. The efficacy of OVA peptide presentation by DCs was evaluated using OVA-specific CD8 and CD4 T cells. Tacrolimus inhibited both class I- and class II-restricted DC presentation of OVA to T cells. Tacrolimus also inhibited both class I- and class II-restricted presentation of OVA in peritoneal macrophages isolated from mice injected with tacrolimus followed by soluble OVA. Tacrolimus-treated peritoneal macrophages, however, were able to present synthetic OVA peptide, SIINFEKL. Inclusion of cyclosporine A to biodegradable microspheres containing OVA greatly reduced their capacity to induce OVA-specific CTL response in mice. These findings provide novel insight into the mode of action of calcineurin inhibitors and have important implications for clinical immunosuppression regimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号