首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a novel method for the direct identification of bacteria from blood culture broths. We evaluate for the first time, the performance of the MALDI Sepsityper™ Kit and MS for the identification of bacteria compared to standard phenotypic methods using the manufacturer''s specified bacterial identification criteria (spectral scores ≥1.700–1.999 and ≥2.000 indicated identification to genus and species level, respectively). Five hundred and seven positive blood culture broths were prospectively examined, of which 379 (74.8%; 358 monomicrobial, 21 polymicrobial) were identified by MALDI-TOF MS; 195 (100%) and 132 (67.7%) of 195 gram-positive; and 163 (100%) and 149 (91.4%) of 163 gram-negative organisms from monomicrobial blood cultures were correctly identified to genus and species level, respectively. Spectral scores <1.700 (no identification) were obtained in 128/507 (25.2%) positive blood culture broths, including 31.6% and 32.3% of gram-positive and polymicrobial blood cultures, respectively. Significantly more gram-negative organisms were identified compared to gram-positive organisms at species level (p<0.0001). Five blood cultures were misidentified, but at species level only; including four monomicrobial blood cultures with Streptococcus oralis/mitis that were misidentified as Streptococcus pneumoniae. Positive predictive values for the direct identification of both gram-positive and gram-negative bacteria from monomicrobial blood culture broths to genus level were 100%. A diagnostic algorithm for positive blood culture broths that incorporates gram staining and MALDI-TOF MS should identify the majority of pathogens, particularly to genus level.  相似文献   

2.

Background

With long delays observed between sampling and availability of results, the usefulness of blood cultures in the context of emergency infectious diseases has recently been questioned. Among methods that allow quicker bacterial identification from growing colonies, matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry was demonstrated to accurately identify bacteria routinely isolated in a clinical biology laboratory. In order to speed up the identification process, in the present work we attempted bacterial identification directly from blood culture bottles detected positive by the automate.

Methodology/Principal Findings

We prospectively analysed routine MALDI-TOF identification of bacteria detected in blood culture by two different protocols involving successive centrifugations and then lysis by trifluoroacetic acid or formic acid. Of the 562 blood culture broths detected as positive by the automate and containing one bacterial species, 370 (66%) were correctly identified. Changing the protocol from trifluoroacetic acid to formic acid improved identification of Staphylococci, and overall correct identification increased from 59% to 76%. Lack of identification was observed mostly with viridans streptococci, and only one false positive was observed. In the 22 positive blood culture broths that contained two or more different species, only one of the species was identified in 18 samples, no species were identified in two samples and false species identifications were obtained in two cases. The positive predictive value of bacterial identification using this procedure was 99.2%.

Conclusions/Significance

MALDI-TOF MS is an efficient method for direct routine identification of bacterial isolates in blood culture, with the exception of polymicrobial samples and viridans streptococci. It may replace routine identification performed on colonies, provided improvement for the specificity of blood culture broths growing viridans streptococci is obtained in the near future.  相似文献   

3.
Kok J  Thomas LC  Olma T  Chen SC  Iredell JR 《PloS one》2011,6(8):e23285
Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a novel method for the direct identification of bacteria from blood culture broths. We evaluate for the first time, the performance of the MALDI Sepsityper? Kit and MS for the identification of bacteria compared to standard phenotypic methods using the manufacturer's specified bacterial identification criteria (spectral scores ≥1.700-1.999 and ≥2.000 indicated identification to genus and species level, respectively). Five hundred and seven positive blood culture broths were prospectively examined, of which 379 (74.8%; 358 monomicrobial, 21 polymicrobial) were identified by MALDI-TOF MS; 195 (100%) and 132 (67.7%) of 195 gram-positive; and 163 (100%) and 149 (91.4%) of 163 gram-negative organisms from monomicrobial blood cultures were correctly identified to genus and species level, respectively. Spectral scores <1.700 (no identification) were obtained in 128/507 (25.2%) positive blood culture broths, including 31.6% and 32.3% of gram-positive and polymicrobial blood cultures, respectively. Significantly more gram-negative organisms were identified compared to gram-positive organisms at species level (p<0.0001). Five blood cultures were misidentified, but at species level only; including four monomicrobial blood cultures with Streptococcus oralis/mitis that were misidentified as Streptococcus pneumoniae. Positive predictive values for the direct identification of both gram-positive and gram-negative bacteria from monomicrobial blood culture broths to genus level were 100%. A diagnostic algorithm for positive blood culture broths that incorporates gram staining and MALDI-TOF MS should identify the majority of pathogens, particularly to genus level.  相似文献   

4.
The BACTEC MGIT 960 system is increasingly used to culture Mycobacterium tuberculosis. We evaluated the performance of the new immunochromatographic assay BD MGIT TBc Identification Test (TBc ID) for the rapid identification of M. tuberculosis complex in clinical samples when performed directly from BACTEC MGIT 960 culture positive for acid-fast bacilli (AFB).Of 92 cultures evaluated, the sensitivity and specificity of the TBc ID test was 98.5% and 100%, respectively compared to sequencing of the 16S rRNA gene. One culture that was TBc ID test negative but that was identified as M. tuberculosis by 16S rRNA sequencing was confirmed to have a mutation in the mpt64 gene.The TBc ID test is an easy and sensitive method for the identification of M. tuberculosis complex in liquid culture medium, does not require a high level of skills, neither any additional specific equipment and gives results in 15 min, which provide a good alternative for the rapid identification of M. tuberculosis complex in liquid medium.  相似文献   

5.
Two entomopathogenic bacteria, Photorhabdus temperata subsp. temperata (Ptt) and Xenorhabdus nematophila (Xn), are symbiotically associated with the nematodes, Heterorhabdis megidis and Steinernema carpocapsae, respectively. There is little information on natural host ranges of the nematodes, but a significant difference in pathogenicity was observed between these two bacteria against the red flour beetle, Tribolium castaneum, in which Ptt exhibited more than six times higher pathogenicity than Xn. The pathogenic difference was not due to their inhibitory effect on phospholipase A2 activity that is required for expression of immune response of T. castaneum. The culture broths of both bacterial species had insecticidal activities when injected into the hemocoel. When the bacterial culture broths were fractionated into aqueous and organic extracts, most insecticidal activity remained in the aqueous extracts. The aqueous extracts of two bacteria contained proteins which showed different profiles.  相似文献   

6.
Methicillin-resistant Staphylococcus aureus (MRSA) is notorious as a hospital superbug and a problematic pathogen among communities. The incidence of MRSA has substantially increased over time in Iraq. The aim of this study was to determine the prevalence and spa types of MRSA isolates from outpatients or patients upon admission into hospitals. Various biochemical tests identified S. aureus isolates, and then this identification was confirmed by PCR using species-specific 16S rRNA primer pairs. Antibiotic susceptibility was determined against methicillin, oxacillin, and vancomycin using the disk diffusion method. Vancomycin MIC was detected by VITEK 2 compact system. All the identified isolates were screened for the presence of mecA and lukS-PV-lukF-PV genes; 36 of them were subjected to spa typing-based PCR. Out of 290 clinical samples, 65 (22.4%) were S. aureus, of which 62 (95.4%) strains were resistant to oxacillin and methicillin. Except for two isolates, all MRSA isolates were mecA positive. One of the three MSSA isolates was mecA positive. Five strains were resistant to vancomycin. Fourteen (21.5%) isolates were positive for the presence of lukS-PV-lukF-PV genes. Spa typing of 36 S. aureus isolates revealed eleven different spa types, t304 (30.3%), t307 (19.4%), t346 (8.3%), t044 (8.3%), t15595 (8.3%), t386 (5.5%), t5475 (5.5%), t17928 (2.8%), t14870 (2.8%), t021 (2.8%), and t024 (2.8%). These findings could be useful for assessing the genetic relatedness of strains in the region for epidemiological and monitoring purposes, which would be essential to limiting the spread of MRSA.  相似文献   

7.
Ticks represent a large group of pathogen vectors that blood feed on a diversity of hosts. In the Americas, the Ixodidae ticks Amblyomma cajennense are responsible for severe impact on livestock and public health. In the present work, we present the isolation and molecular identification of a group of culturable bacteria associated with A. cajennense eggs from females sampled in distinct geographical sites in southeastern Brazil. Additional comparative analysis of the culturable bacteria from Anocentor nitens, Rhipicephalus sanguineus and Ixodes scapularis tick eggs were also performed. 16S rRNA gene sequence analyses identified 17 different bacterial types identified as Serratia marcescens, Stenotrophomonas maltophilia, Pseudomonas fluorescens, Enterobacter spp., Micrococcus luteus, Ochrobactrum anthropi, Bacillus cereus and Staphylococcus spp., distributed in 12 phylogroups. Staphylococcus spp., especially S. sciuri, was the most prevalent bacteria associated with A. cajennense eggs, occurring in 65% of the samples and also frequently observed infecting A. nitens eggs. S. maltophilia, S. marcescens and B. cereus occurred infecting eggs derived from specific sampling sites, but in all cases rising almost as pure cultures from infected A. cajennense eggs. The potential role of these bacterial associations is discussed and they possibly represent new targets for biological control strategies of ticks and tick borne diseases.  相似文献   

8.
An immunofluorescence method for detection of Vibrio cholerae serovar 01 in aquatic environmental samples and enrichment broths is described. Antiserum specific for the 01 somatic antigen was produced in rabbits and used in an indirect fluorescent antibody method incorporating fluoresceinisothiocyanate conjugated anti-rabbit globulin goat serum, and rhodamine isothiocynate conjugated bovine serum albumin as background stain. Comparisons of the immunofluorescent procedure and conventional culture methods for isolation of V. cholerae 01 showed that detection occurred significantly more frequently with the fluorescent antibody system.  相似文献   

9.
A triplex-PCR assay was developed and evaluated for rapid detection of methicillin-resistant Staphylococcus aureus (MRSA) recovered from various biological samples of pig. Three sets of primers were designed to target mecA, 16S rRNA and nuc genes of MRSA. The specific amplification generated three bands on agarose gel, with sizes 280 bp for mecA, 654 bp for 16S rRNA and 481 bp for nuc, respectively. A potential advantage of the PCR assay is its sensitivity with a detection limit of 102 CFU per ml of bacteria. In all, 79 MRSA isolates recovered from various samples of pigs were subjected to the amplification by the triplex-PCR assay and all the isolates yielded three bands corresponding to the three genes under this study. No false-positive amplification was observed, indicating the high specificity of the developed triplex-PCR assay. This assay will be a useful and powerful method for differentiation of MRSA from methicillin-sensitive S. aureus, coagulase-negative methicillin-resistant staphylococci and coagulase-negative methicillin-sensitive staphylococci.  相似文献   

10.

Background

A multicenter study was conducted to evaluate the diagnostic accuracy (sensitivity and specificity) of the Verigene Gram-Positive Blood Culture Test (BC-GP) test to identify 12 Gram-positive bacterial gene targets and three genetic resistance determinants directly from positive blood culture broths containing Gram-positive bacteria.

Methods and Findings

1,252 blood cultures containing Gram-positive bacteria were prospectively collected and tested at five clinical centers between April, 2011 and January, 2012. An additional 387 contrived blood cultures containing uncommon targets (e.g., Listeria spp., S. lugdunensis, vanB-positive Enterococci) were included to fully evaluate the performance of the BC-GP test. Sensitivity and specificity for the 12 specific genus or species targets identified by the BC-GP test ranged from 92.6%–100% and 95.4%–100%, respectively. Identification of the mecA gene in 599 cultures containing S. aureus or S. epidermidis was 98.6% sensitive and 94.3% specific compared to cefoxitin disk method. Identification of the vanA gene in 81 cultures containing Enterococcus faecium or E. faecalis was 100% sensitive and specific. Approximately 7.5% (87/1,157) of single-organism cultures contained Gram-positive bacteria not present on the BC-GP test panel. In 95 cultures containing multiple organisms the BC-GP test was in 71.6% (68/95) agreement with culture results. Retrospective analysis of 107 separate blood cultures demonstrated that identification of methicillin resistant S. aureus and vancomycin resistant Enterococcus spp. was completed an average of 41.8 to 42.4 h earlier using the BC-GP test compared to routine culture methods. The BC-GP test was unable to assign mecA to a specific organism in cultures containing more than one Staphylococcus isolate and does not identify common blood culture contaminants such as Micrococcus, Corynebacterium, and Bacillus.

Conclusions

The BC-GP test is a multiplex test capable of detecting most leading causes of Gram-positive bacterial blood stream infections as well as genetic markers of methicillin and vancomycin resistance directly from positive blood cultures. Please see later in the article for the Editors'' Summary  相似文献   

11.
Cutaneotrichosporon (Trichosporon) debeurmannianum is a rarely isolated yeast from clinical samples. Nine isolates of this yeast were identified from clinical samples within a period of 3 years from June 2012 to May 2015. These isolates were from blood and urine samples sent to a clinical mycology laboratory of a tertiary care hospital in Assam, North East India. Clinically, the patients were diagnosed as septicemia and urinary tract infection. The age of the patients ranged from 2 to 50 years. Identification was made by sequencing the ITS region of ribosomal RNA gene. Antifungal susceptibility test by disk diffusion method (CLSI, M44-A) showed all the isolates to be sensitive to fluconazole and voriconazole. Vitek 2 compact commercial yeast identification system misidentified this yeast as Cryptococcus laurentii and low discrimination Cryptococcus laurentii/Trichosporon mucoides. This species was originally named as Trichosporon debeurmannianum. In 2015, this yeast has been included into new genera Cutaneotrichosporon based on an integrated phylogenetic classification of the Tremellomycetes. To the best of our knowledge, this is the first report of identification of this species from blood and urine samples of clinically suspected cases. We are reporting these isolates because of their rarity in clinical samples. The pathogenic potential and epidemiological relevance of this yeast remains to be seen.  相似文献   

12.
To culture facultative and strict anaerobic bacteria is a well-established method for analyzing subgingival plaque samples. Micro-IDent® and micro-IDent® Plus (HAIN Lifescience GmbH, Nehren, Germany) tests are two commercially available rapid PCR-based methods for the identification and quantification of putative periodontopathogen bacteria. In this study, we compared these commercial PCR-based hybridization methods with conventional anaerobic culture technique. A total of 36 subgingival plaque samples were collected from periodontal pockets of pregnant women with chronic localized periodontitis. Aliquots of these samples were evaluated with species-specific probes provided by micro-IDent® and micro-IDent® Plus tests simultaneously, and from the same samples anaerobic and capnophylic bacteria were cultured on selective media. The overall agreement between both methods was excellent for Eubacterium nodatum, Tannerella forsythia and Porphyromonas gingivalis (97–92%), fair for Capnocytophaga sp, Eikenella corrodens, Actinobacillus actinomycetemcomitans, and Prevotella intermedia (91–89%) and poor for Fusobacterium nucleatum, Parvimonas micra (Micromonas micros), and Campylobacter rectus (86–78%). Discrepancies in the results may be explained by inability of culture method to distinguish between closely related taxa (e.i P. intermedia/Prevotella. nigrescens), and problems of keeping periodontopathogen bacteria viable, which is required for successful detection by standard culture method. Nucleic acid-based methods may replace cultivation method as frequently used methods in microbiological diagnosis of progressive periodontitis, thus micro-IDent® andmicro-IDent® Plus tests can be recommended where culture of periodontopathogenic bacteria is not performed in routine microbiology laboratories to analyze subgingival plaque samples.  相似文献   

13.
Definitive diagnosis of infectious diseases, including food poisoning, requires culture and identification of the infectious agent. We described how antibodies could be used to shorten this cumbersome process. Specifically, we employed an anti-Salmonella lipopolysaccharide O12 monoclonal antibody in an epitope-inhibition 10-min test (TUBEX TP) to detect O12+ Salmonella organisms directly from routine blood culture broths. The aim is to obviate the need to subculture the broth and subsequently identify the colonies. Thus, blood from 78 young outpatients suspected of having enteric fever was incubated in an enrichment broth, and after 2 or 4 days, broth samplings were examined by TUBEX TP as well as by conventional agar culture and identification. TUBEX TP was performed before the culture results. Eighteen isolates of S. Typhi (15 after 2 days) and 10 isolates of S. Paratyphi A (4 after 2 days) were obtained by conventional culture. Both these Salmonella serotypes, the main causes of enteric fever, share the O12 antigen. In all instances where either of these organisms was present (cultured), TUBEX TP was positive (score 4 [light blue] – to – score 10 [dark blue]; negative is 0 [pink-colored]) i.e. 100% sensitive. Identification of the specific Salmonella serotype in TUBEX-positive cases was achieved subsequently by conventional slide agglutination using appropriate polyclonal antisera against the various serotypes. Twelve Escherichia coli, 1 Alcaligenes spp. and 1 Enterobacter spp. were isolated. All of these cases, including all the 36 culture-negative broths, were TUBEX-negative i.e. TUBEX TP was 100% specific. In a separate study using known laboratory strains, TUBEX TF, which detects S. Typhi but not S. Paratyphi A via the O9 antigen, was found to efficiently complement TUBEX TP as a differential test. Thus, TUBEX TP and TUBEX TF are useful adjuncts to conventional culture because they can save considerable time (>2 days), costs and manpower.  相似文献   

14.
Detection and capture methods using antibodies have been developed to ensure identification of pathogens in biological samples. Though antibodies have many attractive properties, they also have limitations and there are needs to expand the panel of available affinity proteins with different properties. Affitins, that we developed from the Sul7d proteins, are a solid class of affinity proteins, which can be used as substitutes to antibodies or to complement them. We report the generation and characterization of antibacterial Affitins with high specificity for Staphylococcus aureus. For the first time, ribosome display selections were carried out using whole-living-cell and naïve combinatorial libraries, which avoid production of protein targets and immunization of animals. We showed that Affitin C5 exclusively recognizes S. aureus among dozens of strains, including clinical ones. C5 binds staphylococcal Protein A (SpA) with a K D of 108 ± 2 nM and has a high thermostability (T m = 77.0°C). Anti-S. aureus C5 binds SpA or bacteria in various detection and capture applications, including ELISA, western blot analysis, bead-fishing, and fluorescence imaging. Thus, novel anti-bacteria Affitins which are cost-effective, stable, and small can be rapidly and fully designed in vitro with high affinity and specificity for a surface-exposed marker. This class of reagents can be useful in diagnostic and biomedical applications.  相似文献   

15.
Over a period of ten months a total of 5618 cord blood units (CBU) were screened for microbial contamination under routine conditions. The antibiotic resistance profile for all isolates was also examined using ATB strips. The detection rate for culture positive units was 7.5%, corresponding to 422 samples.16S rRNA sequence analysis and identification with API test system were used to identify the culturable aerobic, microaerophilic and anaerobic bacteria from CBUs. From these samples we recovered 485 isolates (84 operational taxonomic units, OTUs) assigned to the classes Bacteroidia, Actinobacteria, Clostridia, Bacilli, Betaproteobacteria and primarily to the Gammaproteobacteria. Sixty-nine OTUs, corresponding to 447 isolates, showed 16S rRNA sequence similarities above 99.0% with known cultured bacteria. However, 14 OTUs had 16S rRNA sequence similarities between 95 and 99% in support of genus level identification and one OTU with 16S rRNA sequence similarity of 90.3% supporting a family level identification only. The phenotypic identification formed 29 OTUs that could be identified to the species level and 9 OTUs that could be identified to the genus level by API test system. We failed to obtain identification for 14 OTUs, while 32 OTUs comprised organisms producing mixed identifications. Forty-two OTUs covered species not included in the API system databases. The API test system Rapid ID 32 Strep and Rapid ID 32 E showed the highest proportion of identifications to the species level, the lowest ratio of unidentified results and the highest agreement to the results of 16S rRNA assignments. Isolates affiliated to the Bacilli and Bacteroidia showed the highest antibiotic multi-resistance indices and microorganisms of the Clostridia displayed the most antibiotic sensitive phenotypes.  相似文献   

16.
Periodontal disease is a chronic infectious disease, which is characterized by the damaged dental hard tissue by lactic acid generated by microorganisms after the fermentation of carbohydrates rich diet. The risk of periodontal disease is known to be higher in diabetic patients. We compared the diversity of five commonly occurring dental bacteria including Porphyromonas gingivalis, Tannerella forsythia, Capnocytophaga ochracea, Prevotella intermedia, and Aggregatibacter actinomycetemcomitans in 14 type-2 diabetic patients and equal numbers of healthy controls. The subgingival samples were collected using sterile paper points. We used 16S rRNA sequence specific primers for PCR-based identification of dental bacteria. Our results showed that A. actinomycetemcomitans was completely absent in control subjects but present in 43% of diabetic patients. C. ochracea was highly prevalent in diabetic patients (100%) as compared to controls (28.5%). The frequency of other three bacterial species was also higher in diabetic patients than control subjects. These findings indicate that dental bacteria are highly prevalent in subgingival pockets of diabetic patients. Therefore, proper monitoring of diabetic patients for dental care is important to prevent bacterial growth and its sequela in risky individuals. Further case-control studies using larger sample size would help in validating the association between oral diseases and diabetes.  相似文献   

17.
The recombinant plasmid pIP1713 was constructed to analyse the transpositional activity of the insertion sequence IS1181 in Staphylococcus aureus RN4220, Staphylococcus carnosus TM300 and Listeria monocytogenes EGD. This 11.3-kb plasmid contains two genetically different elements: (i) a pE194ts-derived replicon, the ermC gene of which confers resistance to erythromycin in Gram-positive bacteria of several species, and (ii) a copy of IS1181, cloned from S. aureus BM3121, in which the tetracycline resistance gene, tet(T), has been inserted between the transposase-encoded gene and the downstream inverted repeat. When introduced by electroporation into the three bacterial hosts, pIP1713 delivered IS1181Ωtet(T) to various chromosomal sites. Cointegrate structures between pIP1713 and the host chromosome were occasionally detected. Transposition was associated with 8-bp repeats at the insertion sites. IS1181Ωtet(T) could be used for random mutagenesis in Gram-positive bacteria.  相似文献   

18.
Limulus blood cells maintained in culture are able to phagocytose particles under conditions where bacterial endotoxin is absent. In the presence of endotoxin, phagocytosis is inhibited because the cells are immobile under these conditions and because the extracellular gel found in the presence of endotoxin prevents cell-particle contact. It is suggested that Limulus blood cells respond to Gram-negative organisms by the formation of an extracellular gel matrix that entraps the bacteria and handles other types of foreign particles by phagocytosis.  相似文献   

19.
Detection and identification of bacterial etiology in urine is critical for accurate diagnosis and subsequent rational treatment of urinary tract infections (UTIs). Urine culture followed by a series of biochemical reactions is currently the standard method for detecting and distinguishing microorganisms associated with UTIs. The whole procedure commonly takes more than 24 h. Here we developed a new system combining 16S rRNA gene broad-range PCR with pyrosequencing technology that allows for bacteria detection and identification in urine in 5 h. To evaluate this system for rapid diagnosis of bacteriuria, 768 urine specimens were collected from patients with suspected UTIs and were tested side-by-side using standard urine culture-based identification method and the pyrosequencing method. The results from pyrosequencing correlated well with those from traditional culture-based identification method. The overall agreement between these two methods reached 98.0% (753/768). In addition, we tested the sensitivity of pyrosequencing method and determined that urine bacterial numbers as low as 104 cfu/ml could be accurately detected and identified. In conclusion, compared with traditional biochemical method, the PCR-pyrosequencing system significantly improved the detection and identification of bacteriuria with shorter time, higher accuracy, and higher throughput, thus allowing earlier pathogen-adapted antibiotic therapy for patients.  相似文献   

20.

Background

Peptide nucleic acid fluorescent in situ hybridization (PNA-FISH) is a rapid and established method for identification of Candida sp., Gram positive, and Gram negative bacteria from positive blood cultures. This study reports clinical experience in the evaluation of 103 positive blood cultures and 17 positive peritoneal fluid cultures from 120 patients using PNA-FISH. Our study provides evidence as to potential pharmaceutical cost savings based on rapid pathogen identification, in addition to the novel application of PNA-FISH to peritoneal fluid specimens.

Methods

Identification accuracy and elapsed time to identification of Gram positives, Gram negatives, and Candida sp., isolated from blood and peritoneal fluid cultures were assessed using PNA-FISH (AdvanDx), as compared to standard culture methods. Patient charts were reviewed to extrapolate potential pharmaceutical cost savings due to adjustment of antimicrobial or antifungal therapy, based on identification by PNA-FISH.

Results

In blood cultures, time to identification by standard culture methods for bacteria and Candida sp., averaged 83.6 hours (95% CI 56.7 to 110.5). Identification by PNA-FISH averaged 11.2 hours (95% CI 4.8 to 17.6). Overall PNA-FISH identification accuracy was 98.8% (83/84, 95% CI 93.5% to 99.9%) as compared to culture. In peritoneal fluid, identification of bacteria by culture averaged 87.4 hours (95% CI ?92.4 to 267.1). Identification by PNA-FISH averaged 16.4 hours (95% CI ?57.3 to 90.0). Overall PNA-FISH identification accuracy was 100% (13/13, 95% CI 75.3% to 100%). For Candida sp., pharmaceutical cost savings based on PNA-FISH identification could be $377.74/day. For coagulase-negative staphylococcus (CoNS), discontinuation of vancomycin could result in savings of $20.00/day.

Conclusions

In this retrospective study, excellent accuracy of PNA-FISH in blood and peritoneal fluids with reduced time to identification was observed, as compared to conventional culture-based techniques. Species-level identification based on PNA-FISH could contribute to notable cost savings due to adjustments in empiric antimicrobial or antifungal therapy as appropriate to the pathogen identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号