首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wsc1 and Mid2 are highly O-glycosylated cell surface proteins that reside in the plasma membrane of Saccharomyces cerevisiae. They have been proposed to function as mechanosensors of cell wall stress induced by wall remodeling during vegetative growth and pheromone-induced morphogenesis. These proteins are required for activation of the cell wall integrity signaling pathway that consists of the small G-protein Rho1, protein kinase C (Pkc1), and a mitogen-activated protein kinase cascade. We show here by two-hybrid experiments that the C-terminal cytoplasmic domains of Wsc1 and Mid2 interact with Rom2, a guanine nucleotide exchange factor (GEF) for Rho1. At least with regard to Wsc1, this interaction is mediated by the Rom2 N-terminal domain. This domain is distinct from the Rho1-interacting domain, suggesting that the GEF can interact simultaneously with a sensor and with Rho1. We also demonstrate that extracts from wsc1 and mid2 mutants are deficient in the ability to catalyze GTP loading of Rho1 in vitro, providing evidence that the function of the sensor-Rom2 interaction is to stimulate nucleotide exchange toward this G-protein. In a related line of investigation, we identified the PMT2 gene in a genetic screen for mutations that confer an additive cell lysis defect with a wsc1 null allele. Pmt2 is a member of a six-protein family in yeast that catalyzes the first step in O mannosylation of target proteins. We demonstrate that Mid2 is not mannosylated in a pmt2 mutant and that this modification is important for signaling by Mid2.  相似文献   

2.
Hcs77 is a putative cell surface sensor for cell integrity signaling in Saccharomyces cerevisiae. Its loss of function results in cell lysis during growth at elevated temperatures (e.g., 39 degrees C) and impaired signaling to the Mpk1 mitogen-activated protein kinase in response to mild heat shock. We isolated the MID2 gene as a dosage suppressor of the cell lysis defect of an hcs77 null mutant. MID2 encodes a putative membrane protein whose function is required for survival of pheromone treatment. Mid2 possesses properties similar to those of Hcs77, including a single transmembrane domain and a long region that is rich in seryl and threonyl residues. We demonstrate that Mid2 is required for cell integrity signaling in response to pheromone. Additionally, we show that Mid2 and Hcs77 serve a redundant but essential function as cell surface sensors for cell integrity signaling during vegetative growth. Both proteins are uniformly distributed through the plasma membrane and are highly O-mannosylated on their extracellular domains. Finally, we identified a yeast homolog of MID2, designated MTL1, which provides a partially redundant function with MID2 for cell integrity signaling during vegetative growth at elevated temperature but not for survival of pheromone treatment. We conclude that Hcs77 is dedicated to signaling cell wall stress during vegetative growth and that Mid2 participates in this signaling, but its primary role is in signaling wall stress during pheromone-induced morphogenesis.  相似文献   

3.
4.
Glycosylation is a widespread post-translational modification found in glycoproteins. Glycans play key roles in protein folding, quality control in the endoplasmic reticulum (ER) and protein trafficking within cells. However, it remains unclear whether all positions of protein glycosylation are involved in glycan functions, or if specific positions have individual roles. Here we demonstrate the integral involvement of a specific N-glycan from amongst the three glycans present on inducible costimulator (ICOS), a T-cell costimulatory molecule, in proper protein folding and intracellular trafficking to the cell surface membrane. We found that glycosylation-defective mutant proteins lacking N-glycan at amino-acid position 89 (N89), but not proteins lacking either N23 or N110, were retained within the cell and were not detected on the cell surface membrane. Additional evidence suggested that N89 glycosylation was indirectly involved in ICOS ligand binding. These data suggest that amongst the three putative ICOS glycosylation sites, N89 is required for proper ICOS protein folding in the ER, intracellular trafficking and ligand binding activity. This study represents a substantial contribution to the current mechanistic understanding of the necessity and potential functions of a specific N-glycan among the multiple glycans of glycoproteins.  相似文献   

5.
6.
To reveal insight into the initiation of mammalian O-mannosylation in vivo, recombinant glycosylation probes containing sections of human alpha-dystroglycan (hDG) were expressed in epithelial cell lines. We demonstrate that O-mannosylation within the mucin domain of hDG occurs preferentially at Thr/Ser residues that are flanked by basic amino acids. Protein O-mannosylation is independent of a consensus sequence, but strictly dependent on a peptide region located upstream of the mucin domain. This peptide region cannot be replaced by other N-terminal peptides, however, it is not sufficient to induce O-mannosylation on a structurally distinct mucin domain in hybrid constructs. The presented in vivo evidence for a more complex regulation of mammalian O-mannosylation contrasts with a recent in vitro study of O-mannosylation in human alpha-dystroglycan peptides indicating the existence of an 18-meric consensus sequence. We demonstrate in vivo that the entire region p377-417 is necessary and sufficient for O-mannosylation initiation of hDG, but not of MUC1 tandem repeats. The feature of a doubly controlled initiation process distinguishes mammalian O-mannosylation from other types of O-glycosylation, which are largely controlled by structural properties of the substrate positions and their local peptide environment.  相似文献   

7.
KlWSC1, KlWSC2/3 and KlMID2, which encode putative plasma membrane sensors for cell wall integrity signaling in Kluyveromyces lactis, were cloned and characterized. Double and triple deletion mutants show severe cell integrity defects, indicating overlapping functions. The Klwsc1 Klmid2 double deletion phenotype can be suppressed by overexpression of the downstream components KlROM2, KlPKC1 and KlBCK1. KlWsc1 sensor domain analyses showed that an amino-terminal elongation as well as an extension within the cytoplasmic domain are dispensable for function. Heterologous complementation by KlMID2 and KlWSC1 in Saccharomyces cerevisiae is only achieved upon overexpression. In contrast to ScMID2, ScWSC1 complements in K. lactis. Functional studies with chimeric Mid2 constructs indicate that species specificity is mainly conferred by the extracellular domain. Sensor-GFP fusions localize to the plasma membrane, with a cell cycle dependent distribution of KlWsc1-GFP. Both Wsc-type sensors concentrate in discrete spots within the plasma membrane.  相似文献   

8.
KlWSC1, KlWSC2/3 and KlMID2, which encode putative plasma membrane sensors for cell wall integrity signaling in Kluyveromyces lactis, were cloned and characterized. Double and triple deletion mutants show severe cell integrity defects, indicating overlapping functions. The Klwsc1 Klmid2 double deletion phenotype can be suppressed by overexpression of the downstream components KlROM2, KlPKC1 and KlBCK1. KlWsc1 sensor domain analyses showed that an amino-terminal elongation as well as an extension within the cytoplasmic domain are dispensable for function. Heterologous complementation by KlMID2 and KlWSC1 in Saccharomyces cerevisiae is only achieved upon overexpression. In contrast to ScMID2, ScWSC1 complements in K. lactis. Functional studies with chimeric Mid2 constructs indicate that species specificity is mainly conferred by the extracellular domain. Sensor-GFP fusions localize to the plasma membrane, with a cell cycle dependent distribution of KlWsc1-GFP. Both Wsc-type sensors concentrate in discrete spots within the plasma membrane.  相似文献   

9.
The AP‐2 complex is a heterotetrameric endocytic cargo‐binding adaptor that facilitates uptake of membrane proteins during mammalian clathrin‐mediated endocytosis. While budding yeast has clear homologues of all four AP‐2 subunits which form a complex and localize to endocytic sites in vivo, the function of yeast AP‐2 has remained enigmatic. Here, we demonstrate that AP‐2 is required for hyphal growth in Candida albicans and polarized cell responses in Saccharomyces cerevisiae. Deletion of APM4, the cargo‐binding mu subunit of AP‐2, causes defects in pseudohyphal growth, generation of a mating projection and the cell wall damage response. In an apm4 null mutant, the cell wall stress sensor Mid2 is unable to relocalize to the tip of a mating projection following pheromone addition, or to the mother bud neck in response to cell wall damage. A direct binding interaction between Mid2 and the mu homology domain of Apm4 further supports a model in which AP‐2 binds Mid2 to facilitate its internalization and relocalization in response to specific signals. Thus, Mid2 is the first cargo for AP‐2 identified in yeast. We propose that endocytic recycling of Mid2 and other components is required for polarized cell responses ensuring cell wall deposition and is tightly monitored during cell growth.   相似文献   

10.
N-linked protein glycosylation was originally thought to be specific to eukaryotes, but evidence of this post-translational modification has now been discovered across all domains of life: Eucarya, Bacteria, and Archaea. In all cases, the glycans are first assembled in a step-wise manner on a polyisoprenoid carrier lipid. At some stage of lipid-linked oligosaccharide synthesis, the glycan is flipped across a membrane. Subsequently, the completed glycan is transferred to specific asparagine residues on the protein of interest. Interestingly, though the N-glycosylation pathway seems to be conserved, the biosynthetic pathways of the polyisoprenoid carriers, the specific structures of the carriers, and the glycan residues added to the carriers vary widely. In this review we will elucidate how organisms in each basic domain of life synthesize the polyisoprenoids that they utilize for N-linked glycosylation and briefly discuss the subsequent modifications of the lipid to generate a lipid-linked oligosaccharide.  相似文献   

11.
Straede A  Heinisch JJ 《FEBS letters》2007,581(23):4495-4500
Cell wall integrity signalling in Saccharomyces cerevisiae provides a model for the regulation of fungal wall biosynthesis. Chimers of the major plasma membrane sensors Wsc1 and Mid2 fused to GFP have been employed to show that intracellular and membrane distribution is only dependent on a membrane-anchored cytoplasmic tail. Phenotypic analyses of chimeric sensors in an isogenic Deltamid2 Deltawsc1 double deletion strain indicate that this tail, provided that it is linked to an extracellular domain, also determines the cellular response to different surface stresses to a large extent.  相似文献   

12.
Ras is a highly conserved GTPase protein that is essential for proper polarized morphogenesis of filamentous fungi. Localization of Ras proteins to the plasma membrane and endomembranes through posttranslational addition of farnesyl and palmitoyl residues is an important mechanism through which cells provide specificity to Ras signal output. Although the Aspergillus fumigatus RasA protein is known to be a major regulator of growth and development, the membrane distribution of RasA during polarized morphogenesis and the role of properly localized Ras signaling in virulence of a pathogenic mold remain unknown. Here we demonstrate that Aspergillus fumigatus RasA localizes primarily to the plasma membrane of actively growing hyphae. We show that treatment with the palmitoylation inhibitor 2-bromopalmitate disrupts normal RasA plasma membrane association and decreases hyphal growth. Targeted mutations of the highly conserved RasA palmitoylation motif also mislocalized RasA from the plasma membrane and led to severe hyphal abnormalities, cell wall structural changes, and reduced virulence in murine invasive aspergillosis. Finally, we provide evidence that proper RasA localization is independent of the Ras palmitoyltransferase homolog, encoded by erfB, but requires the palmitoyltransferase complex subunit, encoded by erfD. Our results demonstrate that plasma membrane-associated RasA is critical for polarized morphogenesis, cell wall stability, and virulence in A. fumigatus.  相似文献   

13.
The human respiratory syncytial virus (Long strain) fusion protein contains six potential N-glycosylation sites: N27, N70, N116, N120, N126, and N500. Site-directed mutagenesis of these positions revealed that the mature fusion protein contains three N-linked oligosaccharides, attached to N27, N70, and N500. By introducing these mutations into the F gene in different combinations, four more mutants were generated. All mutants, including a triple mutant devoid of any N-linked oligosaccharide, were efficiently transported to the plasma membrane, as determined by flow cytometry and cell surface biotinylation. None of the glycosylation mutations interfered with proteolytic activation of the fusion protein. Despite similar levels of cell surface expression, the glycosylation mutants affected fusion activity in different ways. While the N27Q mutation did not have an effect on syncytium formation, loss of the N70-glycan caused a fusion activity increase of 40%. Elimination of both N-glycans (N27/70Q mutant) reduced the fusion activity by about 50%. A more pronounced reduction of the fusion activity of about 90% was observed with the mutants N500Q, N27/500Q, and N70/500Q. Almost no fusion activity was detected with the triple mutant N27/70/500Q. These data indicate that N-glycosylation of the F2 subunit at N27 and N70 is of minor importance for the fusion activity of the F protein. The single N-glycan of the F1 subunit attached to N500, however, is required for efficient syncytium formation.  相似文献   

14.
The potassium ion channel Kv3.1b is a member of a family of voltage‐gated ion channels that are glycosylated in their mature form. In the present study, we demonstrate the impact of N‐glycosylation at specific asparagine residues on the trafficking of the Kv3.1b protein. Large quantities of asparagine 229 (N229)‐glycosylated Kv3.1b reached the plasma membrane, whereas N220‐glycosylated and unglycosylated Kv3.1b were mainly retained in the endoplasmic reticulum (ER). These ER‐retained Kv3.1b proteins were susceptible to degradation, when co‐expressed with calnexin, whereas Kv3.1b pools located at the plasma membrane were resistant. Mass spectrometry analysis revealed a complex type Hex3HexNAc4Fuc1 glycan as the major glycan component of the N229‐glycosylated Kv3.1b protein, as opposed to a high‐mannose type Man8GlcNAc2 glycan for N220‐glycosylated Kv3.1b. Taken together, these results suggest that trafficking‐dependent roles of the Kv3.1b potassium channel are dependent on N229 site‐specific glycosylation and N‐glycan structure, and operate through a mechanism whereby specific N‐glycan structures regulate cell surface expression.  相似文献   

15.
16.
17.
Fasciclin‐like arabinogalactan proteins (FLAs) are involved in numerous important functions in plants but the relevance of their complex structure to physiological function and cellular fate is unresolved. Using a fully functional fluorescent version of Arabidopsis thaliana FLA4 we show that this protein is localized at the plasma membrane as well as in endosomes and soluble in the apoplast. FLA4 is likely to be GPI‐anchored, is highly N‐glycosylated and carries two O‐glycan epitopes previously associated with arabinogalactan proteins. The activity of FLA4 was resistant against deletion of the amino‐proximal fasciclin 1 domain and was unaffected by removal of the GPI‐modification signal, a highly conserved N‐glycan or the deletion of predicted O‐glycosylation sites. Nonetheless these structural changes dramatically decreased endoplasmic reticulum (ER)‐exit and plasma membrane localization of FLA4, with N‐glycosylation acting at the level of ER‐exit and O‐glycosylation influencing post‐secretory fate. We show that FLA4 acts predominantly by molecular interactions involving its carboxy‐proximal fasciclin 1 domain and that its amino‐proximal fasciclin 1 domain is required for stabilization of plasma membrane localization. FLA4 functions as a soluble glycoprotein via its carboxy‐proximal Fas1 domain and its normal cellular trafficking depends on N‐ and O‐glycosylation.  相似文献   

18.
The association of receptors and solute transporters with components of the endocytic machinery regulates their surface levels, and thereby cellular sensitivity to cytokines, ligands and nutrients in the extracellular environment. Most transmembrane receptors and solute transporters are glycoproteins, and the Asn ( N )-linked oligosaccharides ( N -glycans) can bind animal lectins, forming multivalent lattices or microdomains that regulate glycoprotein mobility in the plane of membrane. The N -glycan number (sequence-encoded NXS/T) and context-dependent Golgi N -glycan branching cooperate to regulate glycoprotein affinities for the galectin family of lectins. Galectin-3 binding reduces EGF receptor trafficking into clathrin-coated pits and caveolae lipid rafts, decreases ligand-independent receptor activation and promotes α5β1 integrin remodelling in focal adhesions. N -glycan branching in the medial Golgi increases glycan affinity for galectins, and the Golgi pathway is sensitive to uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) supply, in turn hexosamine pathway metabolites (fructose-6-P, glutamine and acetyl-CoA). Thus, lattice avidity and cellular responsiveness to extracellular cues are regulated in an adaptive manner by metabolism and Golgi modification to glycoproteins. Computational modelling of the hexosamine/Golgi/lattice has provided new insight on cell surface adaptation in cancer and autoimmune disease.  相似文献   

19.
Post-translational modification of polypeptides with glycans increases the diversity of the structures of proteins and imparts increased functional diversity. Here, we review the current literature on a relatively new O-glycosylation pathway, the mammalian O-mannosylation pathway. The importance of O-mannosylation is illustrated by the fact that O-mannose glycan structures play roles in a variety of processes including viral entry into cells, metastasis, cell adhesion, and neuronal development. Furthermore, mutations in the enzymes of this pathway are causal for a variety of congenital muscular dystrophies. Here we highlight the protein substrates, glycan structures, and enzymes involved in O-mannosylation as well as our gaps in understanding structure/function relationships in this biosynthetic pathway.  相似文献   

20.
Caveolae are plasma membrane invaginations involved in transport, signalling and mechanical membrane sensing in metazoans. Their formation depends upon multiple interactions between membrane‐embedded caveolins, lipids and cytosolic cavin proteins. Of the four cavin family members, only cavin1 is strictly required for caveola formation. Here, we demonstrate that an eleven residue (undecad) repeat sequence (UC1) exclusive to cavin1 is essential for caveolar localization and promotes membrane remodelling through binding to phosphatidylserine. In the notochord of mechanically stimulated zebrafish embryos, the UC1 domain is required for caveolar stability and resistance to membrane stress. The number of undecad repeats in the cavin1 UC1 domain varies throughout evolution, and we find that an increased number also correlates with increased caveolar stability. Lastly, we show that the cavin1 UC1 domain induces dramatic remodelling of the plasma membrane when grafted into cavin2 suggesting an important role in membrane sculpting. Overall, our work defines a novel conserved cavin1 modular domain that controls caveolar assembly and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号