首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse bone marrow cells in suspension were separated into a number of fractions on the basis of cell density by equilibrium density gradient centrifugation, or on the basis of cell size by velocity sedimentation. After each type of separation, the cells from the various fractions were assayed for their ability to form macroscopic spleen colonies in irradiated recipient mice, and for their ability to form colonies in a cell culture system. The results from either separation technique demonstrate that cells in some fractions formed more colonies in vivo than in the culture system, while cells in other fractions formed more colonies in culture than in the spleen. The results of control experiments indicate that this separation of the two types of colony-forming cells was not an artifact of the separation procedures. From these experiments it was concluded that the population of cells which form colonies in culture under the conditions used is not identical to the population of cells detected by the spleen colony assay.  相似文献   

2.
The colony-forming ability of haematopoietic cells of W anaemic mice was examined on the macrophage layer formed in the peritoneal cavity of mice. Bone marrow cells of W anaemic mice formed a considerable number of colonies on the macrophage layer, notwithstanding they did not form any colonies in the spleen of the same recipients. As the colony-forming ability of the bone marrow cells was not reduced by the incubation with 3H-thymidine, most of the cells which formed colonies on the macrophage layer seemed to stay in G0 state. The interrelationship between the spleen colony-forming cells, the macrophage-layer colony-forming cells, and in vitro colony-forming cells was discussed.  相似文献   

3.
The progressive growth and development of spleen colonies was studied in heavily irradiated host mice in which erythropoiesis was modified by various procedures. Erythropoietic activity in non-polycythemic hosts bearing spleen colonies was not increased by injections of exogenous erythropoietin. Detectable levels of erythropoietin were found in the heavily irradiated host mice suggesting that the failure of exogenous erythropoietin to modify erythropoiesis was because the host mice were already maximally stimulated by the high endogenous erythropoietin levels. Spleen colonies do not become erythroid in polycythemic mice. The injection of exogenous erythropoietin into heavily irradiated polycythemic hosts did not decrease the total number of spleen colonies produced by a given bone marrow transplant, as would be expected if erythropoietin acted directly on the colony-forming cells. Comparison of growth curves for colony-forming cells in the spleens of polycythemic hosts either receiving or not receiving erythropoietin indicated that the overall doubling time of colony-forming cells during the first ten days after transplantation was not changed by the daily injection of erythropoietin. These experiments are consistent with the concept that erythropoietin is necessary for the development of erythroid colonies. Erythropoietin acts upon some progeny of the colony-forming cell rather than the colony-forming cell itself.  相似文献   

4.
The cellular composition of individual hemopoietic spleen colonies has been studied using techniques which tested primarily for cell function rather than cell morphology. Erythroblastic cells were recognized by their capacity to incorporate radioiron, granulocytic cells by their content of peroxidase-positive material, and hemopoietic stem cells by their ability to form spleen colonies in irradiated hosts. It was found that, 14 days after the initiation of spleen colonies, the distribution of these cell types among individual colonies was very heterogeneous, but that most colonies contained detectable numbers of erythroblasts, granulocytes and colony-forming cells. An appreciable proportion of the cells in the colonies could not be identified as any of these three cell types. No strong correlations between numbers of erythroblasts, granulocytes and colony-forming cells in individual colonies were observed, though there was a tendency for colonies containing a high proportion of erythroblasts to contain a low proportion of granulocytes, and for colonies containing a high proportion of granulocytes to contain a higher proportion of colony-forming cells. An analysis of colonies which contained cells bearing radiation-induced chromosomal markers indicated that 83–98% of the dividing cells within 14-day spleen colonies were derived from single precursors.  相似文献   

5.
OBJECTIVE: To develop an image analysis system to automatically identify colony-forming units (CFUs) in in vitro cell cultures of connective tissue progenitors. This system was designed to quantitatively assess colony morphology and number of colonies in 4-cm(2) culture wells. STUDY DESIGN: Large field-of-view high-resolution fluorescence images of 4',6-diamidino-2-phenylindole (DAPI)- and alkaline phosphatase (AP)-stained bone marrow cell cultures were obtained using an epi-fluorescence microscope and automated scanning stage. Cell nuclei were identified in the DAPI-stained images after removal of fluorescent debris from the image. An Euclidean distance map (EDM) of the segmented cell nuclei was used to cluster cell nuclei into colonies. The automated system was evaluated using 40 tissue culture wells of bone marrow aspirate samples. The results of the automated analysis were compared to the manual tracings of colonies by 3 reviewers. RESULTS: The automated method agreed with all 3 reviewers on average 87.5% of the time. Additionally, reviewers identified other colonies not outlined by the reviewers on average 2.7 times more than the automated method. CONCLUSION: The automated method is a less biased method for identifying CFUs than individual reviewers, it provides more quantitative information about colony morphology than can be obtained manually and it is less time consuming.  相似文献   

6.
The aim of this work was to define a transfection procedure that is compatible with the sorting and propagation of cells that transiently express a heterologous gene. Three requirements were established for the procedure and were met with COS monkey kidney cells that express a recombinant glutathione S-transferase (GST) gene. The transfection procedure used had to generate (i) populations in which at least 10% of the cells expressed recombinant GST, (ii) cellular morphological homogeneity throughout the population, and (iii) viable cells with at least a 5% colony-forming ability. Of the transfection techniques tested, only electroporation satisfied all three requirements. Usually 20-22% of the cells that survived electroporation expressed recombinant GST 3 days after electroporation as measured by flow cytometry, and 25% of the cells that survived electroporation formed colonies in cloning assays. Transfection with DEAE-dextran and chloroquine did enable 40% of the surviving cells to express GST, but only 0.01% of the cells that survived transfection formed colonies in cloning assays. Finally, with lipofection, only 1% of the surviving cells expressed recombinant GST, although 25-40% of the cells that survived transfection formed colonies. These studies define the merits and limitations of transfection techniques relative to the analysis and sorting of transfected cells by flow cytometry.  相似文献   

7.
Serially cultivated with 3T3 feeder layer support as colonies of stratified squamous epithelium, rat epidermal and esophageal epithelial cells were readily distinguishable by three criteria. First, the epidermal colonies, exhibiting extensive piling up of squames in the centers, were more stratified than esophageal colonies. Second, in sparse culture 70 to 90% of the esophageal cells but as few as 1 to 5% of the epidermal cells were competent in cross-linked envelope formation upon treatment with the ionophore X537A. After reaching confluence, up to 90% of the cells of both types formed envelopes upon ionophore treatment. Third, epidermal cells in suspension culture reached maximal levels of spontaneously cross-linked envelopes in 1 day or less, while esophageal cells required about 4 days in suspension to reach maximal levels. A reproducible finding with both cell types was that initial colony-forming efficiencies of less than 1% increased to about 40% upon serial passage with consequent derivation of continuous lines. Sparse cultures of esophageal cells with high colony-forming ability retained a high degree of envelope competence (70 to 90%), indicating these two properties are not mutually exclusive. The derived lines exhibited reduced dependence upon feeder layer support at clonal density, but in suspension culture the cells did not grow and lost colony-forming ability with a half-time of several hours. We conclude that cells from these keratinized rat epithelia exhibit intrinsic differences in culture and become continuous lines expressing characteristic regulation of envelope competence and loss of germinative capability in suspension.  相似文献   

8.
9.
Presenilin-1 (PS1) is a gene responsible for the development of early-onset familial Alzheimer's disease. Targeted disruption of the PS1 gene in mice suggested that PS1 might be involved in angiogenesis. We have used an in vitro embryonic stem (ES) cell culture system to prepare endothelial progenitor cells (EPC) lacking PS1 and investigated the roles of PS1 in endothelial cell lineage. With this system, Flk-1+ E-cadherin- EPC were generated from PS1-deficient ES cells, and the EPC lacking PS1 as well as wild-type EPC grew to form VE-cadherin+ endothelial colonies supported by a layer of OP9 stromal cells. Although the endothelial colonies from PS1-deficient EPC showed morphology similar to those from wild-type EPC, the PS1-deficient EPC formed a large number of the colonies compared to wild-type EPC. The enhanced colony-forming ability of PS1-deficient EPC was attenuated by the inductions of wild-type human PS1. To differentiate multiple activities of PS1 for colony-forming ability, we used two types of human PS1 mutants: one (hPS1D257A) with the aspartate to alanine mutation at residue 257 that impairs the proteolytic activity of PS1, and the other (hPS1Deltacat) deleting amino acids 340-371 of the cytosolic loop sequence essential for beta-catenin binding. hPS1D257A showed activity to regulate the colony-forming ability of PS1-deficient EPC, while hPS1Deltacat failed to exhibit this activity. These results suggest that PS1 regulates the growth and differentiation of endothelial progenitor cells through its beta-catenin-binding region and that the defect of PS1 function in endothelial cell lineage could contribute to the induction of vascular pathology.  相似文献   

10.
A technique has been developed for transplanting whole thyroid follicles into the fat pads of recipient thyroidectomized rats to assess the ability of the follicular cells to proliferate and form colonies, i.e., clusters of new follicles. Of the transplanted follicles, 80-90% formed follicle clusters, indicative of the presence of transplanted follicles not containing colony-forming cells (clonogens) or some reproducible degree of transplantation trauma. The initial number of clonogens per regenerative follicle was calculated from data from split-dose experiments to be 3.3 +/- 1.5, and their sensitivity was characterized by a D0 value of 350 +/- 95 cGy. Three clonogens among about 80 epithelial cells per regenerative follicle and the 10-20% of nonregenerative follicles represent an overall colony-forming efficiency of about 3%. This is similar to the value of 2-3% reported by others using single-cell transplantation techniques.  相似文献   

11.
Fibroblast colonies (clones) were obtained by explantation of bone marrow single-cell suspensions and were used to establish multicolony and single-colony derived fibroblast cultures by successive passaging of either pooled or individual colonies. When transplanted in diffusion chambers after 20-30 cell doublings in vitro, the descendants of fibroblast colony-forming cells (FCFC), whether grown from single or pooled colonies, retained the ability for bone and cartilage formation. The content of osteogenic precursors in the cultured progeny significantly outnumbered the initiating FCFC. Thus the high proliferative potential of bone marrow FCFC and their ability to serve as common precursors of bone and cartilage-forming cells makes them probable candidates for the role of osteogenic stem cells.  相似文献   

12.
Abstract. Fibroblast colonies (clones) were obtained by explantation of bone marrow single-cell suspensions and were used to establish multicolony and single-colony derived fibroblast cultures by successive passaging of either pooled or individual colonies. When transplanted in diffusion chambers after 20–30 cell doublings in vitro , the descendants of fibroblast colony-forming cells (FCFC), whether grown from single or pooled colonies, retained the ability for bone and cartilage formation. The content of osteogenic precursors in the cultured progeny significantly outnumbered the initiating FCFC. Thus the high proliferative potential of bone marrow FCFC and their ability to serve as common precursors of bone and cartilage-forming cells makes them probable candidates for the role of osteogenic stem cells.  相似文献   

13.
The commitment of novel mouse erythroleukemic (MEL) cells (TSA8) to colony-forming units of erythroid (CFU-E) by dimethylsulfoxide (DMSO) was investigated. After exposure to the inducer in liquid culture, the cells were transferred to a semi-solid culture to examine their ability to form erythroid colonies which were dependent on erythropoietin. Exposure to DMSO for 2 days is optimum for CFU-E type colony formation and colonies induced in this manner are equivalent to CFU-E. The induction occurred in a synchronous manner. Partly stained colonies appeared prior to CFU-E formation and are thought to be a result of asymmetric cell division. Appearance of these partly stained colonies suggested that the number of erythropoietin receptors is important in the complete responsiveness to erythropoietin. TSA8 cells constitute a suitable model system in which to analyse the mechanism of commitment in early erythropoiesis.  相似文献   

14.
Primary cultures and cell lines form three types of colonies, termed holoclones, meroclones and paraclones by Barrandon and Green (Proc Natl Acad Sci U S A 84:2302-2306, 1987). They suggested that the three types correspond to colonies derived from stem, transit-amplifying and terminally differentiated cells. We determined the effect of culture conditions (seeding density, serum concentration, type of medium and substrate) on the proportion of each colony type and the cell number of individual colonies, using three prostate cancer cell lines, DU145, LNCaP and PC-3. In less favourable culture conditions, stem cell (SC) colonies tended to be lost; but in more favourable conditions, only modest increases in the proportion of SC colonies were observed. Under some conditions, cell number, but not colony-forming ability, was altered, indicating that colony cell number is controlled, at least in part, by different factors to colony formation. Colony-forming ability of individual cell lines is remarkably stable and there is little evidence for clonal evolution in culture, which might be expected and would result in more aggressive, faster-growing cells. Better understanding of how colony-forming efficiency is controlled could lead to the identification of drug targets that control SC growth and modify the progression of cancer.  相似文献   

15.
Human bone marrow contains a population of haemopoietic progenitor cells that can be distinguished by their ability to adhere to preformed stromal layers (cultured in the presence of methylprednisolone [MP+] and form blast cell colonies. The stromal layers function in the colony assay after they have been heavily irradiated but not after they have been passaged. The binding of the progenitor cells to the stromal cells is complete after 2 hours of coincubation, and stromal layers of 9.6 cm2 can provide adhesion sites for at least 2,000 blast colony-forming cells. The blast colony-forming cells were shown by micromanipulation to self-renew as well as to give rise to multipotential and lineage-committed colony-forming progenitor cells.  相似文献   

16.
Mouse liver Kupffer cells were induced to proliferate and form discrete colonies of mononuclear phagocytes in vitro. These colony-forming cells from the liver are similar to other mononuclear phagocyte colony-forming cells in that they require a colony-stimulating factor present in medium conditioned by L cells for proliferation in vitro. Cells in the colonies were phagocytic and had IgG receptors on the membrane. For this class of colony-forming cells, the D0 value to gamma irradiation in vitro was 108 rads.  相似文献   

17.
M Rosendaal  S Villa  C Hooper 《Blood cells》1987,12(3):615-628
The development of a haemopoietic tissue and the time when colony-forming cells in it formed detectable colonies were studied with in vivo spleen colony-forming units (CFUs) and in vitro high-proliferation-potential colony-forming cells (HPP CFC). Cells that form colonies first are developmentally more mature than those doing so later. Marrow containing mature spleen colony-forming cells formed fewer cells in the femora of recipients than that which contained early colony-forming cells. The growth curve of developmentally early high-proliferation potential-colony-forming cells was steeper than that of later cells. The time period before colony-formation occurs is a property of the colony-forming cell and is not due to regulatory mechanisms in the animal or to regulatory cells in the haemopoietic stroma.  相似文献   

18.
A procedure for using the Omnicon automated image analysis system for counting colonies grown from a human tumour cell line (COLO 205) in the Courtenay-Mills assay is described. This involves the transfer of the agar medium from culture tubes into petri dishes. Comparisons of observer and instrument counts were done on a blinded basis. Run-to-run correlation coefficient was 0.996 for automated counting and the inter-observer correlation coefficient was 0.984. Both assessments showed a linear relationship between the number of cells plated and the number of colonies grown. Automated colony counting is fast, reliable and provides additional information on colony size distribution, not obtainable with manual counting. This automated procedure will greatly facilitate in vitro drug sensitivity evaluation.  相似文献   

19.
T-lymphocyte colonies were cultured using lymphocytes from patients with aplastic anaemia and normal donors to assess their respective proliferative activities. Colony numbers from aplastic patient's cells were lower than from normal donors', though this was not significant. When lymphocytes from patients were co-cultured with normal lymphocytes, inhibition of T-colony formation was observed in 8 out of 12 experiments. As the degree of inhibition was greater than if patient cells grew no colonies, then, clearly, normal T-colony formation was inhibited. This ability of patients' lymphocytes to suppress lymphopoiesis might account for the low levels of patient T-colony formation, as well as low in vivo numbers of lymphocytes found in patients with aplastic anaemia. The role of patients' lymphocytes in causing marrow aplasia was investigated. Although the incorporation of patients' lymphocytes in normal granulocyte-macrophage (GM) colony-forming systems inhibited colony growth, in only 1 out of 8 patients was this inhibition significantly greater than that caused by the addition of normal lymphocytes to GM colony systems. Therefore, lymphocytes may not be the primary cause of aplastic anaemia, except for a few rare cases.  相似文献   

20.
The ability of chymotrypsin-treated (chymo+) and untreated (chymo-) polyoma virus to transform cultured hamster embryo fibroblasts was examined. The data show that exposure to this protease reduces the ability of the virus to transform non-permissive cells to essentially the same extent as it reduces its ability to replicate in permissive cells. Twenty-five lines of transformed cells were established from colonies growing in soft agar, and after 20 in vitro passages, cells of all lines were characterized with respect to their ability to form colonies in soft agar and their tumorigenicity in hamsters. While the studies showed that there are striking differences among the lines with respect to colony-forming ability, and real, though less striking differences in tumorigenicity, they failed to reveal any obvious differences between the groups of cell lines transformed by chymo- and chymo+ polyoma virus. Of 13 lines examined, all were found to express both middle and small polyoma T antigens, none express significant levels of large T antigen, and 11 express some form of what is probably a truncated large T antigen, the most common species having a molecular weight of 67000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号