首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Infection by human cytomegalovirus (HCMV) is associated with the development of vascular diseases and may cause severe brain damage in infected fetuses. Platelet-derived growth factor receptors alpha and beta (PDGFR-α and -β) control important cellular processes associated with atherosclerosis and fetal development. In the present investigation, our goal was to determine whether infection by HCMV can influence the expression of PDGFR-α and -β in human smooth muscle cells (SMCs). In connection with HCMV infection in vitro the levels of PDGFR-α and -β at the cell surface and in the total cellular protein of SMCs were reduced in parallel with decreases in the levels of the corresponding mRNAs. These effects were dependent on immediate-early (IE) or early (E) HCMV gene products, since inhibition of late genes did not prevent HCMV from affecting the expression of PDGFR-α and -β. The downregulation of PDGFR caused by HCMV was dose dependent. Furthermore, confocal microscopy revealed that the localization of PDGFR-β was altered in HCMV-infected cells, in which this protein colocalized with proteins associated with endosomes (Rab4 and -5) and lysosomes (Lamp1 and -2), indicating entrance into pathways for protein degradation. Altogether these observations indicate that an IE and/or E HCMV protein(s) downregulates the expression of PDGFR-α and -β in SMCs. This phenomenon may disrupt cellular processes of importance in connection with cellular differentiation, migration, and/or proliferation. These observations may explain why congenital infection with HCMV can cause fetal brain damage.  相似文献   

2.
Human cytomegalovirus (HCMV) is a ubiquitous infectious pathogen that, when transmitted to the fetus in utero, can result in numerous sequelae, including late-onset sensorineural damage. The villous trophoblast, the cellular barrier between maternal blood and fetal tissue in the human placenta, is infected by HCMV in vivo. Primary trophoblasts cultured on impermeable surfaces can be infected by HCMV, but release of progeny virus is delayed and minimal. It is not known whether these epithelial cells when fully polarized can release HCMV and, if so, if release is from the basal membrane surface toward the fetus. We therefore ask whether, and in which direction, progeny virus release occurs from HCMV-infected trophoblasts cultured on semipermeable (3.0-microm-pore-size) membranes that allow functional polarization. We show that infectious HCMV readily diffuses across cell-free 3.0-microm-pore-size membranes and that apical infection of confluent and multilayered trophoblasts cultured on these membranes reaches cells at the membrane surface. Using two different infection and culture protocols, we found that up to 20% of progeny virus is released but that <1% of released virus is detected in the basal culture chamber. These results suggest that very little, if any, HCMV is released from an infected villous trophoblast into the villous stroma where the virus could ultimately infect the fetus.  相似文献   

3.
To understand the mechanisms for establishing and reactivating monocytes and macrophages from latency by human cytomegalovirus (HCMV), human monocyte cell lines were infected and HCMV gene expression was investigated. Indirect immunofluorescence assay (IFA) with monoclonal antibody to HCMV major immediate early (MIE) IE1 or IE2 proteins revealed that HCMV MIE genes were expressed at low levels in relatively more differentiated THP-1 cells with TPA treatment after virus infection (posttreatment). Less differentiated cells such as U937 or HL60 did not support MIE gene expression even after TPA treatment. If THP-1 cells were pretreated before virus infection with TPA and became differentiated at the time of HCMV infection, MIE gene expression increased by 5-6 fold. Therefore, the relative degree of monocyte cell differentiation appears to be an important factor for regulating HCMV gene expression. Further IFA studies using monoclonal antibodies specific for IE1 or IE2 proteins indicate that the sequence and general pattern of IE1 and IE2 gene expression in THP-1 cells treated with TPA were similar to those in permissive human fibroblast cells with some delay in time. Formation of the replication compartment detected with monoclonal antibody to HCMV polymerase accessory protein UL44 in THP-1 cells suggests a fully productive replication process of HCMV in these cells. Monocytes are known to be induced to differentiate by hydrocortisone (HC), tumor necrosis factor (TNF)-alpha or interferon (IFN)-gamma. HC, which is known to stimulate HCMV replication in permissive human fibroblast (HF) cells, enhanced HCMV gene expression by 2-3 fold in TPA-pre or posttreated THP-1 cells, but TNF-alpha or IFN-gamma had little effect. Nitric oxide (NO) is released by immune cells in the defense against foreign stimuli and was shown to inhibit HCMV gene expression in HF cells. Increasing NO by nitroprusside significantly reduced HCMV gene expression in THP-1 cells. Therefore, it appears that the expression of HCMV immediate early genes in THP-1 cells treated with TPA closely resembles those in permissive HF cells.  相似文献   

4.
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that has been implicated in several disorders, including an association between HCMV reactivation and the overproliferation of arterial smooth muscle cells observed in restenosis. Although HCMV can mediate a growth-arrest phenotype in infected cells, the virus can also promote an environment conducive to proliferation. Here, we present evidence that the HCMV immediate-early (IE) proteins, IE1-72 and IE2-86, may be responsible for inducing this proliferative environment by altering cell cycle control. We find that expression of either of these IE proteins can alter the cell cycle distribution of randomly cycling cells towards S and G(2)/M phases. Additionally, we find that expression of IE2-86, but not IE1-72, induces quiescent cells into S phase and delays cell cycle exit. In the absence of p53, IE1-72 expression can induce S phase and delay cell cycle exit. We also demonstrate that p53 protein levels increase in fibroblasts following the expression of IE1-72. The observed accumulation of p53 protein in IE1-72-expressing cells may account for the inability of IE1-72 to induce S phase and delay cell cycle exit. Our data suggest that expression of HCMV IE1-72 and IE2-86 is sufficient to alter the cell cycle to generate an environment conducive to proliferation.  相似文献   

5.
The human cytomegalovirus (HCMV) major immediate-early (IE) proteins share an 85-amino-acid N-terminal domain specified by exons 2 and 3 of the major IE region, UL122-123. We have constructed IE Delta30-77, a recombinant virus that lacks the majority of IE exon 3 and consequently expresses smaller forms of both IE1 72- and IE2 86-kDa proteins. The mutant virus is viable but growth impaired at both high and low multiplicities of infection and exhibits a kinetic defect that is not rescued by growth in fibroblasts expressing IE1 72-kDa protein. The kinetics of mutant IE2 protein accumulation in IE Delta30-77 virus-infected cells are approximately normal compared to wild-type virus-infected cells, but the IE Delta30-77 virus is delayed in expression of early viral genes, including UL112-113 and UL44, and does not sustain expression of mutant IE1 protein as the infection progresses. Additionally, cells infected with IE Delta30-77 exhibit altered expression of cellular proteins compared to wild-type HCMV-infected cells. PML is not dispersed but is retained at ND10 sites following infection with IE Delta30-77 mutant virus. While the deletion mutant retains the ability to mediate the stabilization of cyclin B1, cdc6, and geminin in infected cells, its capacity to upregulate the expression of cyclin E has been reduced. These data indicate that the activity of one or both of the HCMV major IE proteins is required in vivo for the modulation of cell cycle proteins observed in cells infected with wild-type HCMV.  相似文献   

6.
Primary human embryo lung fibroblasts and adult diploid fibroblasts infected by the human cytomegalovirus (HCMV) display beta-galactosidase (beta-Gal) activity at neutral pH (senescence-associated beta-Gal [SA-beta-Gal] activity) and overexpression of the plasminogen activator inhibitor type 1 (PAI-1) gene, two widely recognized markers of the process designated premature cell senescence. This activity is higher when cells are serum starved for 48 h before infection, a process that speeds and facilitates HCMV infection but that is insufficient by itself to induce senescence. Fibroblasts infected by HCMV do not incorporate bromodeoxyuridine, a prerequisite for the formal definition of senescence. At the molecular level, cells infected by HCMV, beside the accumulation of large amounts of the cell cycle regulators p53 and pRb, the latter in its hyperphosphorylated form, display a strong induction of the cyclin-dependent kinase inhibitor (cdki) p16(INK4a), a direct effector of the senescence phenotype in fibroblasts, and a decrease of the cdki p21(CIP1/WAF). Finally, a replicative senescence state in the early phases of infection significantly increased the number of cells permissive to virus infection and enhanced HCMV replication. HCMV infection assays carried out in the presence of phosphonoformic acid, which inhibits the virus DNA polymerase and the expression of downstream genes, indicated that immediate-early and/or early (alpha) genes are sufficient for the induction of SA-beta-Gal activity. When baculovirus vectors expressing HCMV IE1-72 or IE2-86 proteins were inoculated into fibroblasts, the increase of p16(INK4a) (observed predominantly with IE2-86) was similar to that observed with the whole virus, as was the induction of SA-beta-Gal activity, suggesting that the viral IE2 gene leads infected cells into senescence. Altogether our results demonstrate for the first time that HCMV, after arresting the cell cycle and inhibiting apoptosis, triggers the cellular senescence program, probably through the p16(INK4a) and p53 pathways.  相似文献   

7.
FK506 suppresses activation of T cells; however, it down-regulates E-selectin, ICAM-1 and VCAM-1 expression in inflamed tissues. In this study, we investigated the effect of FK506 on expression of those adhesion molecules on human vascular endothelial cells (HMVEC). Culture supernatant from peripheral blood mononuclear cells (PBMC) stimulated with anti-CD3 plus anti-CD2 antibodies effectively induced the expression of E-selectin, ICAM-1 and VCAM-1 on HMVEC, and treatment with FK506 down-regulated their expression. Culture supernatant contained tumor necrosis factor (TNF) alpha and interleukin (IL)-1beta, which effectively induced adhesion molecules, and FK506 suppressed both cytokine secretions. TNFalpha content in culture supernatant was parallel to the induction of adhesion molecules by the culture supernatant. IL-1beta content was not enough to induce those adhesion molecules. Anti-TNFalpha antibody completely inhibited those expressions. FK506 did not inhibit either TNFalpha- or IL-1beta-induced expression of adhesion molecules, or viability of HMVEC. These results indicate that FK506 suppresses migration of inflammatory cells through the inhibition of TNFalpha secretion from leukocytes.  相似文献   

8.
Interactions between fetal extravillous trophoblast cells and maternal uterine cells are of critical importance in successful placentation. In the first trimester, trophoblasts invade the uterine environment and reach the spiral arteries where they interact with vascular cells; however, little is known of the nature of these interactions. We have developed a fluorescent binding assay to investigate the contact between trophoblasts and endothelial cells and to determine its regulation by cytokines and adhesion molecules. Stimulation of an endothelial cell line (SGHEC-7) with interleukin-1beta or tumour necrosis factor-alpha significantly increased adhesion of the first-trimester extravillous trophoblast-derived cell line, SGHPL-4. Using blocking antibodies, vascular cell adhesion molecule-1 (VCAM-1) and integrin alpha4beta1 (VLA-4), but not intercellular adhesion molecule-1 (ICAM-1), were shown to be important in trophoblast binding to activated endothelial cells. SGHPL-4 cells were shown to express HLA-G, alpha4beta1 and ICAM-1 at high levels and LFA-1 and VCAM-1 at lower levels. ICAM-1 and VCAM-1 are expressed on SGHEC-7 cells and their expression was confirmed on primary decidual endothelial cells. In conclusion, we have demonstrated the importance of VCAM-1 and alpha4beta1 in trophoblasts-endothelial interactions. Improved knowledge of the nature of these fetal-maternal interactions will have implications for understanding situations when placentation is compromised.  相似文献   

9.
Human cytomegalovirus (HCMV) is an opportunistic pathogen that has been implicated in the pathogenesis of vascular diseases. HCMV infection of endothelial cells may lead to vascular damage in vitro, and acute-phase HCMV infection has been associated with thrombosis. We hypothesized that viral infection of endothelial cells activates coagulation cascades and contributes to thrombus formation and acute vascular catastrophes in patients with atherosclerotic disease. To assess the effects of HCMV on thrombogenesis, we examined the adhesion and aggregation of blood platelets to uninfected and HCMV-infected endothelial cells. At 7 days after infection, platelet adherence and aggregation were greater in infected than in uninfected cultures (2,000 platelets/100 cells and 225 +/- 15 [mean +/- standard error of the mean] aggregates/five microscopic fields versus 100 platelets/100 cells and no aggregates). von Willebrand factor (vWF), ICAM-1, and VCAM-1 but not collagen IV, E-selectin, P-selectin, CD13, and CD31 were expressed at higher levels on infected cells than on uninfected cells. Platelet aggregation was inhibited by blocking of platelet GPIb (with blocking antibodies) or GPIIb/IIIa (with ReoPro) or by blocking of vWF (with polyclonal antibodies to vWF). Furthermore, blocking of vWF, platelet GPIb, and ICAM-1 but not of the endothelial cell marker CD13, alpha(5)beta(3)-integrin, or HCMV glycoprotein B reduced platelet adherence to infected cells by 75% +/- 5%, 74% +/- 5%, or 18% +/- 5%, respectively. The increased thrombogenicity was dependent on active virus replication and could be inhibited by foscarnet and ganciclovir; these results suggest that a late viral gene may be mediating this phenomenon, which may contribute to vascular catastrophes in patients with atherosclerotic disease.  相似文献   

10.
Human cytomegalovirus (HCMV) is the leading cause of congenital disease in the developed world. Transmission of HCMV to the fetus can occur through the villous placenta. Previously, we have shown that although syncytiotrophoblast (ST) can be productively infected, it is more likely that HCMV reaches the fetus through breaks in the ST than through basal release of progeny virus from infected ST. Progeny virus released on the maternal side could interact back with the ST and accumulate. In pregnancy, the organ distribution of disease burden is dramatically shifted, with the placenta reported as a reservoir for some pathogens. Thus, we propose that the ST layer functions as a viral reservoir, where HCMV is harbored and ultimately protected from degradation. Using primary cytotrophoblasts differentiated into an ST culture in vitro and challenged with HCMV, we have defined reversible binding between the virus and trophoblasts that protects the virus from degradation. This is blocked by treatment with low pH and neutralizing intravenous immunoglobulin. This reversible binding likely is to heparan sulfate proteoglycans, because heparin treatment blocks it. Importantly, we show that bound and released virus maintained in culture for at least 48 h results from inoculum and not progeny virus. Thus, the placenta has the potential to accumulate a relatively high steady-state level of virus within the intervillous space resulting from localized binding and release at the ST. A better understanding of the molecular interactions between HCMV and ST will provide insights regarding interventions to prevent or minimize congenital transmission.  相似文献   

11.
12.
13.

Background

Human cytomegalovirus (HCMV) is the most common pathogen in uterus during pregnancy, which may lead to some serious results such as miscarriage, stillbirth, cerebellar malformation, fetus developmental retardation, but its pathogenesis has not been fully explained. The hypofunction of extravillous cytotrophoblast (EVT) invasion is the essential pathologic base of some complications of pregnancy. c-erbB-2 is a kind of oncogene protein and closely linked with embryogenesis, tissue repair and regeneration. Matrix metalloproteinase (MMP) is one of the key enzymes which affect EVT migration and invasion function. The expression level changes of c-erbB-2, MMP-2 and MMP-9 can reflect the changes of EVT invasion function.

Results

To explore the influence of HCMV on the invasion function of EVT, we tested the protein expression level changes of c-erbB-2, MMP-2 and MMP-9 in villous explant cultured in vitro infected by HCMV, with the use of immunohistochemistry SP method and western blot. We confirmed that HCMV can reproduce and spread in early pregnancy villus; c-erbB-2 protein mainly expressed in normal early pregnancy villous syncytiotrophoblast (ST) remote plasma membrane and EVT, especially remote EVT cell membrane in villous stem cell column, little expressed in ST proximal end cell membrane and interstitial cells; MMP-2 protein primarily expressed in early pregnancy villous EVT endochylema and rarely in villous trophoblast (VT), ST and interstitial cells; MMP-9 protein largely expressed in early pregnancy villous mesenchyme, EVT and VT endochylema. Compared with control group, the three kinds of protein expression level in early pregnancy villus of virus group significantly decreased (P < 0.05).

Conclusion

HCMV can infect villus in vitro and cause the decrease of early pregnancy villous EVT's invasion function.  相似文献   

14.
Recombinant human lymphotoxin (LT) was compared with recombinant human tumor necrosis factor (TNF) for direct actions on cultured human endothelial cells (HEC). At equivalent half-maximal concentrations (based on L929 cytotoxicity units) LT and TNF each caused rapid and transient induction (peak 4 to 6 hr) of an antigen associated with leukocyte adhesion (detected by monoclonal antibody H4/18), a rapid but sustained increased expression (plateau 24 hr) of a lymphocyte adhesion structure (ICAM-1), a gradual (plateau 4 to 6 days) increase in expression of HLA-A,B antigens, and gradual (4 to 6 days) conversion of HEC culture morphology from epithelioid to fibroblastoid, an effect enhanced by immune interferon (IFN-gamma). Induction of H4/18 binding by maximal concentrations of LT or TNF could not be augmented by addition of the other cytokine, and 24 hr pretreatment with LT or TNF produced hyporesponsiveness to both mediators for reinduction. H4/18 binding can be transiently induced by tumor-promoting phorbol esters. Pretreatment with either LT or TNF also fully inhibited induction of H4/18 binding by phorbol ester, whereas phorbol ester pretreatment only variably and partially inhibited reinduction by LT or TNF. These actions of LT on endothelium shared with TNF may serve in vivo to promote lymphocyte and inflammatory leukocyte adhesion and transendothelial migration. Recombinant human interleukin 1 species (IL 1 alpha and IL 1 beta) shared many of the actions of LT and TNF and were indistinguishable from each other. However, IL 1 species could be distinguished from LT/TNF by their relative inability to enhance HLA-A,B expression, by their ability to augment H4/18 binding caused by maximally effective concentrations of LT or TNF, and by their inability to inhibit reinduction of H4/18 binding by LT or TNF. In contrast to the actions of LT or TNF, pretreatment with IL 1 alpha or IL 1 beta only partially inhibited induction of H4/18 binding by phorbol ester, and phorbol ester pretreatment consistently, albeit partially, inhibited induction by IL 1 species. These studies suggest that activated T cells through the secretion of LT can in turn activate the local endothelial lining so as to promote homing and extravasation of inflammatory cells. Furthermore, these LT actions can be augmented or complemented by other locally produced mediators such as IFN-gamma or IL 1.  相似文献   

15.
16.
ICAM-1 upregulation by endothelial cells plays a pivotal role in many disease processes, but signalling mechanisms leading to increased expression are poorly understood. In the current study we investigated the regulatory capacity of reactive oxygen intermediates (ROIs) in ICAM-1 activation by stimulating endothelial cells with the pro-inflammatory cytokines IL-1β, TNFα, IFNγ, IL-2, and IL-4 prior to antioxidant treatment. ICAM-1 was expressed constitutively and upregulated on ECV304 by IL1-β, IL2, and IFNγ and on SKHEP-1 by IFNγ, IL1-β, and TNFα. Phenanthroline (PHE) and disulfiram (DIS) showed the greatest ability to inhibit cytokine-stimulated ICAM-1 expression and in a dose-dependent manner. The α,α-diphenyl-β-picrylhydrazyl (DPPH) conversion assay showed that PHE and DIS had zero ability to scavenge free radicals and thus no known antioxidant activity. However, both are known metal chelators and our findings therefore suggest a unique role for metal ions in the control of cytokine-induced ICAM-1 expression on endothelial cells.  相似文献   

17.
18.
19.
To examine the effects of glucocorticoid on rhinovirus (RV) infection, primary cultures of human tracheal epithelial cells were infected with either RV2 or RV14. Viral infection was confirmed by demonstrating that viral RNA in infected cells and viral titers of supernatants and lysates from infected cells increased with time. RV14 infection upregulated the expression of mRNA and protein of intercellular adhesion molecule-1 (ICAM-1), the major RV receptor, on epithelial cells, and it increased the production of interleukin (IL)-1beta, IL-6, IL-8, and tumor necrosis factor-alpha in supernatants. Dexamethasone reduced the viral titers of supernatants and cell lysates, viral RNA of infected cells, and susceptibility of RV14 infection in association with inhibition of cytokine production and ICAM-1 induction. In contrast to RV14 infection, dexamethasone did not alter RV2 infection, a minor group of RVs. These results suggest that dexamethasone may inhibit RV14 infection by reducing the surface expression of ICAM-1 in cultured human tracheal epithelial cells. Glucocorticoid may modulate airway inflammation via reducing the production of proinflammatory cytokines and ICAM-1 induced by rhinovirus infection.  相似文献   

20.
Infected peripheral blood monocytes are proposed to play a key role in the hematogenous dissemination of human cytomegalovirus (HCMV) to tissues, a critical step in the establishment of HCMV persistence and the development of HCMV-associated diseases. We recently provided evidence for a unique strategy involved in viral dissemination: HCMV infection of primary human monocytes promotes their transendothelial migration and differentiation into proinflammatory macrophages permissive for the replication of the original input virus. To decipher the mechanism of hematogenous spread, we focused on the viral dysregulation of early cellular processes involved in transendothelial migration. Here, we present evidence that both phosphatidylinositol 3-kinase [PI(3)K] and NF-kappaB activities were crucial for the HCMV induction of monocyte motility and firm adhesion to endothelial cells. We found that the beta(1) integrins, the beta(2) integrins, intracellular adhesion molecule 1 (ICAM-1), and ICAM-3 were upregulated following HCMV infection and that they played a key role in the firm adhesion of infected monocytes to the endothelium. The viral regulation of adhesion molecule expression is complex, with PI(3)K and NF-kappaB affecting the expression of each adhesion molecule at different stages of the expression cascade. Our data demonstrate key roles for PI(3)K and NF-kappaB signaling in the HCMV-induced cellular changes in monocytes and identify the biological rationale for the activation of these pathways in infected monocytes, which together suggest a mechanism for how HCMV promotes viral spread to and persistence within host organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号